Improvement of XYL10C_∆N catalytic performance through loop engineering for lignocellulosic biomass utilization in feed and fuel industries

Background: Xylanase, an important accessory enzyme that acts in synergy with cellulase, is widely used to degrade lignocellulosic biomass. Thermostable enzymes with good catalytic activity at lower temperatures have great potential for future applications in the feed and fuel industries, which have...

Full description

Bibliographic Details
Main Authors: Bai, Z. (Author), Chen, Y. (Author), Chen, Z. (Author), Hu, Y. (Author), Li, J. (Author), Luo, H. (Author), Wang, J. (Author), Wang, X. (Author), You, S. (Author), Zha, Z. (Author), Zhang, W. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03693nam a2200625Ia 4500
001 10.1186-s13068-021-02044-3
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Improvement of XYL10C_∆N catalytic performance through loop engineering for lignocellulosic biomass utilization in feed and fuel industries 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-021-02044-3 
520 3 |a Background: Xylanase, an important accessory enzyme that acts in synergy with cellulase, is widely used to degrade lignocellulosic biomass. Thermostable enzymes with good catalytic activity at lower temperatures have great potential for future applications in the feed and fuel industries, which have distinct demands; however, the potential of the enzymes is yet to be researched. Results: In this study, a structure-based semi-rational design strategy was applied to enhance the low-temperature catalytic performance of Bispora sp. MEY-1 XYL10C_∆N wild-type (WT). Screening and comparisons were performed for the WT and mutant strains. Compared to the WT, the mutant M53S/F54L/N207G exhibited higher specific activity (2.9-fold; 2090 vs. 710 U/mg) and catalytic efficiency (2.8-fold; 1530 vs. 550 mL/s mg) at 40 °C, and also showed higher thermostability (the melting temperature and temperature of 50% activity loss after 30 min treatment increased by 7.7 °C and 3.5 °C, respectively). Compared with the cellulase-only treatment, combined treatment with M53S/F54L/N207G and cellulase increased the reducing sugar contents from corn stalk, wheat bran, and corn cob by 1.6-, 1.2-, and 1.4-folds, with 1.9, 1.2, and 1.6 as the highest degrees of synergy, respectively. Conclusions: This study provides useful insights into the underlying mechanism and methods of xylanase modification for industrial utilization. We identified loop2 as a key functional area affecting the low-temperature catalytic efficiency of GH10 xylanase. The thermostable mutant M53S/F54L/N207G was selected for the highest low-temperature catalytic efficiency and reducing sugar yield in synergy with cellulase in the degradation of different types of lignocellulosic biomass. Graphic Abstract: [Figure not available: see fulltext.]. © 2021, The Author(s). 
650 0 4 |a Biochemical engineering 
650 0 4 |a biofuel 
650 0 4 |a Biomass 
650 0 4 |a Biomass degradation 
650 0 4 |a Biomass degradations 
650 0 4 |a biomass power 
650 0 4 |a biotechnology 
650 0 4 |a Bispora 
650 0 4 |a catalyst 
650 0 4 |a Catalyst activity 
650 0 4 |a Catalytic efficiencies 
650 0 4 |a Catalytic performance 
650 0 4 |a cellulose 
650 0 4 |a Efficiency 
650 0 4 |a Enzymes 
650 0 4 |a experimental study 
650 0 4 |a Feed industries 
650 0 4 |a Genetic engineering 
650 0 4 |a Gh10 xylanase 
650 0 4 |a GH10 xylanase 
650 0 4 |a low temperature 
650 0 4 |a Lows-temperatures 
650 0 4 |a Low-temperature catalytic performance 
650 0 4 |a Low-temperature catalytic performance 
650 0 4 |a Protein engineering 
650 0 4 |a Protein engineering 
650 0 4 |a synergism 
650 0 4 |a Synergism 
650 0 4 |a Synergism 
650 0 4 |a Temperature 
650 0 4 |a Xylanases 
700 1 |a Bai, Z.  |e author 
700 1 |a Chen, Y.  |e author 
700 1 |a Chen, Z.  |e author 
700 1 |a Hu, Y.  |e author 
700 1 |a Li, J.  |e author 
700 1 |a Luo, H.  |e author 
700 1 |a Wang, J.  |e author 
700 1 |a Wang, X.  |e author 
700 1 |a You, S.  |e author 
700 1 |a Zha, Z.  |e author 
700 1 |a Zhang, W.  |e author 
773 |t Biotechnology for Biofuels