Chaotic physical layer encryption scheme based on phase ambiguity for a DMT system

Chaotic encryption is a promising scheme for physical layer security. By solving the multi-dimensional chaotic equations and transforming the obtained results, both bit-level and symbol-level encryption can be realized. One of the mainstream symbol-level encryption solutions is the constellation shi...

Full description

Bibliographic Details
Main Authors: Gao, R. (Author), Li, Z. (Author), Pan, X. (Author), Tian, F. (Author), Tian, Q. (Author), Wang, X. (Author), Wang, Y. (Author), Xin, X. (Author), Yao, H. (Author), Zhang, Q. (Author)
Format: Article
Language:English
Published: Optica Publishing Group (formerly OSA) 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03050nam a2200493Ia 4500
001 10.1364-OE.454432
008 220510s2022 CNT 000 0 und d
020 |a 10944087 (ISSN) 
245 1 0 |a Chaotic physical layer encryption scheme based on phase ambiguity for a DMT system 
260 0 |b Optica Publishing Group (formerly OSA)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1364/OE.454432 
520 3 |a Chaotic encryption is a promising scheme for physical layer security. By solving the multi-dimensional chaotic equations and transforming the obtained results, both bit-level and symbol-level encryption can be realized. One of the mainstream symbol-level encryption solutions is the constellation shifting (CS) scheme, which treats the chaotic sequence as artificial noise and adds it to the QAM signal sequence to achieve encryption. However, this scheme has several technical flaws in practical application, in terms of computational complexity and coexistence with blind equalization algorithm and the probabilistic shaping (PS) technique. In this paper, we propose a novel symbol-level encryption scheme based on phase ambiguity (PA), which converts the two sequences originally used to generate artificial noise into a set of phase rotation keys and complex conjugate keys, so that the encrypted symbols are still on the ideal constellation point coordinates. Simulation verification is carried out in a discrete multi-tone (DMT) system with 64QAM modulation. Results show that the proposed scheme can fully retain the shaping gain brought by the PS technique and avoid the error convergence of the blind equalizer. Moreover, the time required to solve the chaotic equations is only 38% of the CS scheme. Experimental verification is carried out, and the obtained results once again prove the superiority of the proposed encryption algorithm, which is a practical alternative for future physical layer secure optical communications. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement. 
650 0 4 |a article 
650 0 4 |a Artificial noise 
650 0 4 |a Blind equalization 
650 0 4 |a Chaotic equations 
650 0 4 |a Chaotics 
650 0 4 |a conjugate 
650 0 4 |a Cryptography 
650 0 4 |a Discrete multi tone systems 
650 0 4 |a encryption 
650 0 4 |a Encryption schemes 
650 0 4 |a Network layers 
650 0 4 |a noise 
650 0 4 |a Optical communication 
650 0 4 |a Phase ambiguity 
650 0 4 |a Physical layers 
650 0 4 |a Probabilistics 
650 0 4 |a Quadrature amplitude modulation 
650 0 4 |a rotation 
650 0 4 |a Shaping techniques 
650 0 4 |a Shifting scheme 
650 0 4 |a simulation 
700 1 |a Gao, R.  |e author 
700 1 |a Li, Z.  |e author 
700 1 |a Pan, X.  |e author 
700 1 |a Tian, F.  |e author 
700 1 |a Tian, Q.  |e author 
700 1 |a Wang, X.  |e author 
700 1 |a Wang, Y.  |e author 
700 1 |a Xin, X.  |e author 
700 1 |a Yao, H.  |e author 
700 1 |a Zhang, Q.  |e author 
773 |t Optics Express