Composite substrate of graphene/Ag nanoparticles coupled with a multilayer film for surface-enhanced Raman scattering biosensing

In this paper, we designed a surface-enhanced Raman scattering (SERS) substrate for graphene/Ag nanoparticles (Ag NPs) bonded multilayer film (MLF) using the hybrid nanostructures composed of graphene and plasmonic metal components with significant plasmonic electrical effects and unique optical cha...

Full description

Bibliographic Details
Main Authors: Feng, J. (Author), Gao, J. (Author), Jiang, S. (Author), Liu, C. (Author), Liu, R. (Author), Shafi, M. (Author), Yue, W. (Author), Zha, Z. (Author)
Format: Article
Language:English
Published: Optica Publishing Group (formerly OSA) 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02860nam a2200493Ia 4500
001 10.1364-OE.454893
008 220425s2022 CNT 000 0 und d
020 |a 10944087 (ISSN) 
245 1 0 |a Composite substrate of graphene/Ag nanoparticles coupled with a multilayer film for surface-enhanced Raman scattering biosensing 
260 0 |b Optica Publishing Group (formerly OSA)  |c 2022 
300 |a 12 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1364/OE.454893 
520 3 |a In this paper, we designed a surface-enhanced Raman scattering (SERS) substrate for graphene/Ag nanoparticles (Ag NPs) bonded multilayer film (MLF) using the hybrid nanostructures composed of graphene and plasmonic metal components with significant plasmonic electrical effects and unique optical characteristics. This paper achieved the advantages of efficient utilization of electromagnetic field and reduction of fluorescence background based on the electromagnetic enhancement activity of Ag NPs and unique physical/chemical properties of graphene with zero gap structures. Au/Al2O3 was stacked periodically to construct MLF. As indicated by the electric field intensity at the Au/Al2O3 interface of the respective layer, bulk plasmon polariton (BPP) in the MLF was excited and coupled with localized surface plasmon (LSP) in the Ag NPs, which enhanced the electromagnetic field on the top-layer of SERS substrate. To measure the performance of the SERS substrate, rhodamine 6G (R6G) and malachite green (MG) were used as the probe molecules, with the detection limits of 10−11 M and 10−8 M, respectively. The SERS substrate had high sensitivity and uniformity, which indicated that it has a broad application prospect in the field of molecular detection. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement Journal © 2022 
650 0 4 |a Biosensing 
650 0 4 |a Composite substrate 
650 0 4 |a Electric fields 
650 0 4 |a Electromagnetic fields 
650 0 4 |a Enhanced Raman scattering 
650 0 4 |a Gold nanoparticles 
650 0 4 |a Graphene 
650 0 4 |a Graphene/Ag 
650 0 4 |a Hybrid nanostructures 
650 0 4 |a Metal components 
650 0 4 |a Metal nanoparticles 
650 0 4 |a Multilayer films 
650 0 4 |a Multilayers 
650 0 4 |a Multilayers films 
650 0 4 |a Optical multilayers 
650 0 4 |a Plasmonics 
650 0 4 |a Plasmonics 
650 0 4 |a Raman scattering 
650 0 4 |a Raman scattering substrate 
650 0 4 |a Substrates 
650 0 4 |a Surface enhanced Raman 
650 0 4 |a Surface scattering 
700 1 |a Feng, J.  |e author 
700 1 |a Gao, J.  |e author 
700 1 |a Jiang, S.  |e author 
700 1 |a Liu, C.  |e author 
700 1 |a Liu, R.  |e author 
700 1 |a Shafi, M.  |e author 
700 1 |a Yue, W.  |e author 
700 1 |a Zha, Z.  |e author 
773 |t Optics Express