In silico identification of potential calcium dynamics and sarcomere targets for recovering left ventricular function in rat heart failure with preserved ejection fraction

Heart failure with preserved ejection fraction (HFpEF) is a complex disease associated with multiple co-morbidities, where impaired cardiac mechanics are often the end effect. At the cellular level, cardiac mechanics can be pharmacologically manipulated by altering calcium signalling and the sarcome...

Full description

Bibliographic Details
Main Authors: Longobardi, S. (Author), Niederer, S.A (Author), Sher, A. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
rat
Online Access:View Fulltext in Publisher
LEADER 04699nam a2200757Ia 4500
001 10.1371-JOURNAL.PCBI.1009646
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a In silico identification of potential calcium dynamics and sarcomere targets for recovering left ventricular function in rat heart failure with preserved ejection fraction 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/JOURNAL.PCBI.1009646 
520 3 |a Heart failure with preserved ejection fraction (HFpEF) is a complex disease associated with multiple co-morbidities, where impaired cardiac mechanics are often the end effect. At the cellular level, cardiac mechanics can be pharmacologically manipulated by altering calcium signalling and the sarcomere. However, the link between cellular level modulations and whole organ pump function is incompletely understood. Our goal is to develop and use a multi-scale computational cardiac mechanics model of the obese ZSF1 HFpEF rat to identify important biomechanical mechanisms that underpin impaired cardiac function and to predict how whole-heart mechanical function can be recovered through altering cellular calcium dynamics and/or cellular contraction. The rat heart was modelled using a 3D biventricular biomechanics model. Biomechanics were described by 16 parameters, corresponding to intracellular calcium transient, sarcomere dynamics, cardiac tissue and hemodynamics properties. The model simulated left ventricular (LV) pressure-volume loops that were described by 14 scalar features. We trained a Gaussian process emulator to map the 16 input parameters to each of the 14 outputs. A global sensitivity analysis was performed, and identified calcium dynamics and thin and thick filament kinetics as key determinants of the organ scale pump function. We employed Bayesian history matching to build a model of the ZSF1 rat heart. Next, we recovered the LV function, described by ejection fraction, peak pressure, maximum rate of pressure rise and isovolumetric relaxation time constant. We found that by manipulating calcium, thin and thick filament properties we can recover 34%, 28% and 24% of the LV function in the ZSF1 rat heart, respectively, and 39% if we manipulate all of them together. We demonstrated how a combination of biophysically based models and their derived emulators can be used to identify potential pharmacological targets. We predicted that cardiac function can be best recovered in ZSF1 rats by desensitising the myofilament and reducing the affinity to intracellular calcium concentration and overall prolonging the sarcomere staying in the active force generating state. Copyright: © 2021 Longobardi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Article 
650 0 4 |a Bayes theorem 
650 0 4 |a Bayes Theorem 
650 0 4 |a bepridil 
650 0 4 |a biological model 
650 0 4 |a biology 
650 0 4 |a biomechanics 
650 0 4 |a calcium 
650 0 4 |a Calcium 
650 0 4 |a calcium cell level 
650 0 4 |a calcium current 
650 0 4 |a calcium signaling 
650 0 4 |a chlorpromazine 
650 0 4 |a Computational Biology 
650 0 4 |a computer model 
650 0 4 |a diastolic heart failure 
650 0 4 |a diltiazem 
650 0 4 |a heart failure with preserved ejection fraction 
650 0 4 |a Heart Failure, Diastolic 
650 0 4 |a heart hemodynamics 
650 0 4 |a heart left ventricle ejection fraction 
650 0 4 |a heart left ventricle function 
650 0 4 |a heart left ventricle function 
650 0 4 |a heart left ventricle pressure 
650 0 4 |a heart left ventricle volume 
650 0 4 |a hemodynamics 
650 0 4 |a Hemodynamics 
650 0 4 |a mathematical model 
650 0 4 |a metabolism 
650 0 4 |a mexiletine 
650 0 4 |a Models, Cardiovascular 
650 0 4 |a myofilament 
650 0 4 |a nifedipine 
650 0 4 |a obesity 
650 0 4 |a Obesity 
650 0 4 |a pathophysiology 
650 0 4 |a physiology 
650 0 4 |a ranolazine 
650 0 4 |a rat 
650 0 4 |a Rats 
650 0 4 |a sarcomere 
650 0 4 |a sarcomere 
650 0 4 |a Sarcomeres 
650 0 4 |a sotalol 
650 0 4 |a thin filament 
650 0 4 |a Ventricular Function, Left 
650 0 4 |a verapamil 
650 0 4 |a ZSF1 rat 
700 1 |a Longobardi, S.  |e author 
700 1 |a Niederer, S.A.  |e author 
700 1 |a Sher, A.  |e author 
773 |t PLoS Computational Biology