Extracting multi-way chromatin contacts from Hi-C data

There is a growing realization that multi-way chromatin contacts formed in chromosome structures are fundamental units of gene regulation. However, due to the paucity and complexity of such contacts, it is challenging to detect and identify them using experiments. Based on an assumption that chromos...

Full description

Bibliographic Details
Main Authors: Hyeon, C. (Author), Liu, L. (Author), Zhang, B. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
DNA
Online Access:View Fulltext in Publisher
LEADER 03264nam a2200661Ia 4500
001 10.1371-JOURNAL.PCBI.1009669
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Extracting multi-way chromatin contacts from Hi-C data 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/JOURNAL.PCBI.1009669 
520 3 |a There is a growing realization that multi-way chromatin contacts formed in chromosome structures are fundamental units of gene regulation. However, due to the paucity and complexity of such contacts, it is challenging to detect and identify them using experiments. Based on an assumption that chromosome structures can be mapped onto a network of Gaussian polymer, here we derive analytic expressions for n-body contact probabilities (n > 2) among chromatin loci based on pairwise genomic contact frequencies available in Hi-C, and show that multi-way contact probability maps can in principle be extracted from Hi-C. The three-body (triplet) contact probabilities, calculated from our theory, are in good correlation with those from measurements including Tri-C, MC-4C and SPRITE. Maps of multi-way chromatin contacts calculated from our analytic expressions can not only complement experimental measurements, but also can offer better understanding of the related issues, such as cell-line dependent assemblies of multiple genes and enhancers to chromatin hubs, competition between long-range and short-range multi-way contacts, and condensates of multiple CTCF anchors. Copyright: © 2021 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a animal cell 
650 0 4 |a Article 
650 0 4 |a binding site 
650 0 4 |a cell differentiation 
650 0 4 |a chemistry 
650 0 4 |a chromatin 
650 0 4 |a Chromatin 
650 0 4 |a chromosomal mapping 
650 0 4 |a Chromosome Mapping 
650 0 4 |a chromosome structure 
650 0 4 |a controlled study 
650 0 4 |a data analysis 
650 0 4 |a DNA 
650 0 4 |a DNA 
650 0 4 |a DNA sequencing 
650 0 4 |a Enhancer Elements, Genetic 
650 0 4 |a enhancer region 
650 0 4 |a erythroid cell 
650 0 4 |a fluorescence in situ hybridization 
650 0 4 |a gene 
650 0 4 |a gene expression regulation 
650 0 4 |a Gene Expression Regulation 
650 0 4 |a gene locus 
650 0 4 |a Genes 
650 0 4 |a genetic database 
650 0 4 |a genetic distance 
650 0 4 |a genetics 
650 0 4 |a genomics 
650 0 4 |a Genomics 
650 0 4 |a hemoglobin alpha chain 
650 0 4 |a high throughput sequencing 
650 0 4 |a High-Throughput Nucleotide Sequencing 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a mathematical computing 
650 0 4 |a metabolism 
650 0 4 |a monomer 
650 0 4 |a mouse 
650 0 4 |a nonhuman 
650 0 4 |a prediction 
650 0 4 |a procedures 
650 0 4 |a transcription factor CTCF 
700 1 |a Hyeon, C.  |e author 
700 1 |a Liu, L.  |e author 
700 1 |a Zhang, B.  |e author 
773 |t PLoS Computational Biology