Conditional prediction of consecutive tumor evolution using cancer progression models: What genotype comes next?

Accurate prediction of tumor progression is key for adaptive therapy and precision medicine. Cancer progression models (CPMs) can be used to infer dependencies in mutation accumulation from cross-sectional data and provide predictions of tumor progression paths. However, their performance when predi...

Full description

Bibliographic Details
Main Authors: Diaz-Colunga, J. (Author), Diaz-Uriarte, R. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03179nam a2200469Ia 4500
001 10.1371-journal.pcbi.1009055
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Conditional prediction of consecutive tumor evolution using cancer progression models: What genotype comes next? 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009055 
520 3 |a Accurate prediction of tumor progression is key for adaptive therapy and precision medicine. Cancer progression models (CPMs) can be used to infer dependencies in mutation accumulation from cross-sectional data and provide predictions of tumor progression paths. However, their performance when predicting complete evolutionary trajectories is limited by violations of assumptions and the size of available data sets. Instead of predicting full tumor progression paths, here we focus on short-term predictions, more relevant for diagnostic and therapeutic purposes. We examine whether five distinct CPMs can be used to answer the question “Given that a genotype with n mutations has been observed, what genotype with n + 1 mutations is next in the path of tumor progression?” or, shortly, “What genotype comes next?”. Using simulated data we find that under specific combinations of genotype and fitness landscape characteristics CPMs can provide predictions of short-term evolution that closely match the true probabilities, and that some genotype characteristics can be much more relevant than global features. Application of these methods to 25 cancer data sets shows that their use is hampered by a lack of information needed to make principled decisions about method choice. Fruitful use of these methods for short-term predictions requires adapting method’s use to local genotype characteristics and obtaining reliable indicators of performance; it will also be necessary to clarify the interpretation of the method’s results when key assumptions do not hold. © 2021 Diaz-Colunga, Diaz-Uriarte. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a article 
650 0 4 |a biological model 
650 0 4 |a biology 
650 0 4 |a cancer growth 
650 0 4 |a clinical article 
650 0 4 |a Computational Biology 
650 0 4 |a disease exacerbation 
650 0 4 |a Disease Progression 
650 0 4 |a Evolution, Molecular 
650 0 4 |a genetics 
650 0 4 |a genotype 
650 0 4 |a genotype 
650 0 4 |a Genotype 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Models, Genetic 
650 0 4 |a molecular evolution 
650 0 4 |a mutation 
650 0 4 |a Mutation 
650 0 4 |a neoplasm 
650 0 4 |a Neoplasms 
650 0 4 |a pathology 
650 0 4 |a prediction 
650 0 4 |a probability 
650 0 4 |a procedures 
650 0 4 |a simulation 
650 0 4 |a tumor growth 
700 1 |a Diaz-Colunga, J.  |e author 
700 1 |a Diaz-Uriarte, R.  |e author 
773 |t PLoS Computational Biology