Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves

We construct a recursive Bayesian smoother, termed EpiFilter, for estimating the effective reproduction number, R, from the incidence of an infectious disease in real time and retrospectively. Our approach borrows from Kalman filtering theory, is quick and easy to compute, generalisable, determinist...

Full description

Bibliographic Details
Main Author: Parag, K.V (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03523nam a2200685Ia 4500
001 10.1371-journal.pcbi.1009347
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009347 
520 3 |a We construct a recursive Bayesian smoother, termed EpiFilter, for estimating the effective reproduction number, R, from the incidence of an infectious disease in real time and retrospectively. Our approach borrows from Kalman filtering theory, is quick and easy to compute, generalisable, deterministic and unlike many current methods, requires no change-point or window size assumptions. We model R as a flexible, hidden Markov state process and exactly solve forward-backward algorithms, to derive R estimates that incorporate all available incidence information. This unifies and extends two popular methods, EpiEstim, which considers past incidence, and the Wallinga-Teunis method, which looks forward in time. We find that this combination of maximising information and minimising assumptions significantly reduces the bias and variance of R estimates. Moreover, these properties make EpiFilter more statistically robust in periods of low incidence, where several existing methods can become destabilised. As a result, EpiFilter offers improved inference of time-varying transmission patterns that are advantageous for assessing the risk of upcoming waves of infection or the influence of interventions, in real time and at various spatial scales. Copyright: © 2021 Kris V. Parag. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a basic reproduction number 
650 0 4 |a Basic Reproduction Number 
650 0 4 |a Bayes theorem 
650 0 4 |a Bayes Theorem 
650 0 4 |a Bias 
650 0 4 |a biology 
650 0 4 |a communicable disease 
650 0 4 |a communicable disease control 
650 0 4 |a Communicable Disease Control 
650 0 4 |a Communicable Diseases 
650 0 4 |a Computational Biology 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a computer system 
650 0 4 |a Computer Systems 
650 0 4 |a COVID-19 
650 0 4 |a epidemic 
650 0 4 |a Epidemics 
650 0 4 |a epidemiological monitoring 
650 0 4 |a Epidemiological Monitoring 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a incidence 
650 0 4 |a Incidence 
650 0 4 |a influenza 
650 0 4 |a Influenza A virus (H1N1) 
650 0 4 |a Influenza A Virus, H1N1 Subtype 
650 0 4 |a Influenza, Human 
650 0 4 |a Linear Models 
650 0 4 |a Markov chain 
650 0 4 |a Markov Chains 
650 0 4 |a Models, Statistical 
650 0 4 |a New Zealand 
650 0 4 |a New Zealand 
650 0 4 |a prevention and control 
650 0 4 |a Retrospective Studies 
650 0 4 |a retrospective study 
650 0 4 |a SARS-CoV-2 
650 0 4 |a statistical bias 
650 0 4 |a statistical model 
650 0 4 |a time factor 
650 0 4 |a Time Factors 
650 0 4 |a United States 
650 0 4 |a United States 
700 1 |a Parag, K.V.  |e author 
773 |t PLoS Computational Biology