Genetic dissection of complex traits using hierarchical biological knowledge

Despite the growing constellation of genetic loci linked to common traits, these loci have yet to account for most heritable variation, and most act through poorly understood mechanisms. Recent machine learning (ML) systems have used hierarchical biological knowledge to associate genetic mutations w...

Full description

Bibliographic Details
Main Authors: Ideker, T. (Author), Kreisberg, J.F (Author), Tanaka, H. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03880nam a2200913Ia 4500
001 10.1371-journal.pcbi.1009373
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Genetic dissection of complex traits using hierarchical biological knowledge 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009373 
520 3 |a Despite the growing constellation of genetic loci linked to common traits, these loci have yet to account for most heritable variation, and most act through poorly understood mechanisms. Recent machine learning (ML) systems have used hierarchical biological knowledge to associate genetic mutations with phenotypic outcomes, yielding substantial predictive power and mechanistic insight. Here, we use an ontology-guided ML system to map single nucleotide variants (SNVs) focusing on 6 classic phenotypic traits in natural yeast populations. The 29 identified loci are largely novel and account for ~17% of the phenotypic variance, versus <3% for standard genetic analysis. Representative results show that sensitivity to hydroxyurea is linked to SNVs in two alternative purine biosynthesis pathways, and that sensitivity to copper arises through failure to detoxify reactive oxygen species in fatty acid metabolism. This work demonstrates a knowledge-based approach to amplifying and interpreting signals in population genetic studies. © 2021 Tanaka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a Article 
650 0 4 |a benomyl 
650 0 4 |a Benomyl 
650 0 4 |a biological model 
650 0 4 |a biology 
650 0 4 |a chromosomal mapping 
650 0 4 |a Chromosome Mapping 
650 0 4 |a Computational Biology 
650 0 4 |a controlled study 
650 0 4 |a copper 
650 0 4 |a copper 
650 0 4 |a Copper 
650 0 4 |a drug effect 
650 0 4 |a fatty acid 
650 0 4 |a fatty acid metabolism 
650 0 4 |a gene 
650 0 4 |a gene locus 
650 0 4 |a gene ontology 
650 0 4 |a Gene Ontology 
650 0 4 |a genetic analysis 
650 0 4 |a genetic trait 
650 0 4 |a genetics 
650 0 4 |a genome-wide association study 
650 0 4 |a Genome-Wide Association Study 
650 0 4 |a glucose 
650 0 4 |a Glucose 
650 0 4 |a glycine 
650 0 4 |a Glycine 
650 0 4 |a hydroxyurea 
650 0 4 |a hydroxyurea 
650 0 4 |a Hydroxyurea 
650 0 4 |a knowledge base 
650 0 4 |a Knowledge Bases 
650 0 4 |a machine learning 
650 0 4 |a Machine Learning 
650 0 4 |a Metabolic Networks and Pathways 
650 0 4 |a metabolism 
650 0 4 |a Models, Genetic 
650 0 4 |a multifactorial inheritance 
650 0 4 |a Multifactorial Inheritance 
650 0 4 |a mutation 
650 0 4 |a Mutation 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a nonhuman 
650 0 4 |a nucleotidyltransferase 
650 0 4 |a Nucleotidyltransferases 
650 0 4 |a phenotype 
650 0 4 |a Phenotype 
650 0 4 |a phenotypic variation 
650 0 4 |a Polymorphism, Single Nucleotide 
650 0 4 |a population genetics 
650 0 4 |a procedures 
650 0 4 |a purine 
650 0 4 |a purine synthesis 
650 0 4 |a reactive oxygen metabolite 
650 0 4 |a Saccharomyces cerevisiae 
650 0 4 |a Saccharomyces cerevisiae 
650 0 4 |a single nucleotide polymorphism 
650 0 4 |a single nucleotide polymorphism 
650 0 4 |a systems biology 
650 0 4 |a Systems Biology 
650 0 4 |a UDPacetylglucosamine pyrophosphorylase 
650 0 4 |a yeast 
700 1 |a Ideker, T.  |e author 
700 1 |a Kreisberg, J.F.  |e author 
700 1 |a Tanaka, H.  |e author 
773 |t PLoS Computational Biology