Modular assembly of dynamic models in systems biology

It is widely acknowledged that the construction of large-scale dynamic models in systems biology requires complex modelling problems to be broken up into more manageable pieces. To this end, both modelling and software frameworks are required to enable modular modelling. While there has been consist...

Full description

Bibliographic Details
Main Authors: Crampin, E.J (Author), Cursons, J. (Author), Gawthrop, P.J (Author), Pan, M. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02648nam a2200469Ia 4500
001 10.1371-journal.pcbi.1009513
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Modular assembly of dynamic models in systems biology 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009513 
520 3 |a It is widely acknowledged that the construction of large-scale dynamic models in systems biology requires complex modelling problems to be broken up into more manageable pieces. To this end, both modelling and software frameworks are required to enable modular modelling. While there has been consistent progress in the development of software tools to enhance model reusability, there has been a relative lack of consideration for how underlying biophysical principles can be applied to this space. Bond graphs combine the aspects of both modularity and physics-based modelling. In this paper, we argue that bond graphs are compatible with recent developments in modularity and abstraction in systems biology, and are thus a desirable framework for constructing large-scale models. We use two examples to illustrate the utility of bond graphs in this context: a model of a mitogen-activated protein kinase (MAPK) cascade to illustrate the reusability of modules and a model of glycolysis to illustrate the ability to modify the model granularity. Copyright: © 2021 Pan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a enzyme phosphorylation 
650 0 4 |a glycolysis 
650 0 4 |a MAP Kinase Signaling System 
650 0 4 |a MAPK signaling 
650 0 4 |a mathematical model 
650 0 4 |a Michaelis Menten kinetics 
650 0 4 |a Models, Biological 
650 0 4 |a negative feedback 
650 0 4 |a nonhuman 
650 0 4 |a phosphatase 
650 0 4 |a phosphotransferase 
650 0 4 |a physiology 
650 0 4 |a positive feedback 
650 0 4 |a procedures 
650 0 4 |a steady state 
650 0 4 |a systems biology 
650 0 4 |a systems biology 
650 0 4 |a Systems Biology 
650 0 4 |a thermodynamics 
650 0 4 |a Xenopus 
650 0 4 |a Xenopus 
700 1 |a Crampin, E.J.  |e author 
700 1 |a Cursons, J.  |e author 
700 1 |a Gawthrop, P.J.  |e author 
700 1 |a Pan, M.  |e author 
773 |t PLoS Computational Biology