Unsupervised discovery of dynamic cell phenotypic states from transmitted light movies

Identification of cell phenotypic states within heterogeneous populations, along with elucidation of their switching dynamics, is a central challenge in modern biology. Conventional single-cell analysis methods typically provide only indirect, static phenotypic readouts. Transmitted light images, on...

Full description

Bibliographic Details
Main Authors: Becker, P.S (Author), Chien, S. (Author), Dai, J. (Author), Kueh, H.Y (Author), Monnat, R.J (Author), Nguyen, P. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03492nam a2200661Ia 4500
001 10.1371-journal.pcbi.1009626
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Unsupervised discovery of dynamic cell phenotypic states from transmitted light movies 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009626 
520 3 |a Identification of cell phenotypic states within heterogeneous populations, along with elucidation of their switching dynamics, is a central challenge in modern biology. Conventional single-cell analysis methods typically provide only indirect, static phenotypic readouts. Transmitted light images, on the other hand, provide direct morphological readouts and can be acquired over time to provide a rich data source for dynamic cell phenotypic state identification. Here, we describe an end-to-end deep learning platform, UPSIDE (Unsupervised Phenotypic State IDEntification), for discovering cell states and their dynamics from transmitted light movies. UPSIDE uses the variational auto-encoder architecture to learn latent cell representations, which are then clustered for state identification, decoded for feature interpretation, and linked across movie frames for transition rate inference. Using UPSIDE, we identified distinct blood cell types in a heterogeneous dataset. We then analyzed movies of patient-derived acute myeloid leukemia cells, from which we identified stem-cell associated morphological states as well as the transition rates to and from these states. UPSIDE opens up the use of transmitted light movies for systematic exploration of cell state heterogeneity and dynamics in biology and medicine. Copyright: © 2021 Nguyen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a acute myeloid leukemia 
650 0 4 |a acute myeloid leukemia cell line 
650 0 4 |a adult 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a Article 
650 0 4 |a blood cell 
650 0 4 |a Blood Cells 
650 0 4 |a cell structure 
650 0 4 |a cell subpopulation 
650 0 4 |a cell tracking 
650 0 4 |a classification 
650 0 4 |a classification algorithm 
650 0 4 |a convolutional neural network 
650 0 4 |a cytology 
650 0 4 |a deep learning 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a Humans 
650 0 4 |a image processing 
650 0 4 |a Image Processing, Computer-Assisted 
650 0 4 |a image segmentation 
650 0 4 |a Leukemia, Myeloid, Acute 
650 0 4 |a light 
650 0 4 |a Light 
650 0 4 |a live cell imaging 
650 0 4 |a microscopy 
650 0 4 |a Microscopy 
650 0 4 |a pathology 
650 0 4 |a phenotype 
650 0 4 |a phenotype 
650 0 4 |a Phenotype 
650 0 4 |a procedures 
650 0 4 |a single cell analysis 
650 0 4 |a Single-Cell Analysis 
650 0 4 |a time lapse imaging 
650 0 4 |a Time-Lapse Imaging 
650 0 4 |a unsupervised machine learning 
650 0 4 |a Unsupervised Machine Learning 
700 1 |a Becker, P.S.  |e author 
700 1 |a Chien, S.  |e author 
700 1 |a Dai, J.  |e author 
700 1 |a Kueh, H.Y.  |e author 
700 1 |a Monnat, R.J.  |e author 
700 1 |a Nguyen, P.  |e author 
773 |t PLoS Computational Biology