A novel theoretical framework for simultaneous measurement of excitatory and inhibitory conductances

The firing of neurons throughout the brain is determined by the precise relations between excitatory and inhibitory inputs, and disruption of their balance underlies many psychiatric diseases. Whether or not these inputs covary over time or between repeated stimuli remains unclear due to the lack of...

Full description

Bibliographic Details
Main Authors: Beck, H. (Author), Elyasaf, G. (Author), Katz, Y. (Author), Lampl, I. (Author), Müller-Komorowska, D. (Author), Parabucki, A. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02902nam a2200529Ia 4500
001 10.1371-journal.pcbi.1009725
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a A novel theoretical framework for simultaneous measurement of excitatory and inhibitory conductances 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009725 
520 3 |a The firing of neurons throughout the brain is determined by the precise relations between excitatory and inhibitory inputs, and disruption of their balance underlies many psychiatric diseases. Whether or not these inputs covary over time or between repeated stimuli remains unclear due to the lack of experimental methods for measuring both inputs simultaneously. We developed a new analytical framework for instantaneous and simultaneous measurements of both the excitatory and inhibitory neuronal inputs during a single trial under current clamp recording. This can be achieved by injecting a current composed of two high frequency sinusoidal components followed by analytical extraction of the conductances. We demonstrate the ability of this method to measure both inputs in a single trial under realistic recording constraints and from morphologically realistic CA1 pyramidal model cells. Future experimental implementation of our new method will facilitate the understanding of fundamental questions about the health and disease of the nervous system. Copyright: © 2021 Müller-Komorowska et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a action potential 
650 0 4 |a Action Potentials 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a biology 
650 0 4 |a CA1 Region, Hippocampal 
650 0 4 |a Computational Biology 
650 0 4 |a conceptual framework 
650 0 4 |a controlled study 
650 0 4 |a cytology 
650 0 4 |a electrophysiology 
650 0 4 |a Electrophysiology 
650 0 4 |a frequency analysis 
650 0 4 |a hippocampal CA1 region 
650 0 4 |a hippocampal CA1 region 
650 0 4 |a membrane potential 
650 0 4 |a Mice 
650 0 4 |a Models, Neurological 
650 0 4 |a mouse 
650 0 4 |a nerve cell 
650 0 4 |a nervous system conductance 
650 0 4 |a Neurons 
650 0 4 |a physiology 
650 0 4 |a simulation 
650 0 4 |a synapse 
650 0 4 |a whole cell patch clamp 
700 1 |a Beck, H.  |e author 
700 1 |a Elyasaf, G.  |e author 
700 1 |a Katz, Y.  |e author 
700 1 |a Lampl, I.  |e author 
700 1 |a Müller-Komorowska, D.  |e author 
700 1 |a Parabucki, A.  |e author 
773 |t PLoS Computational Biology