Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity

Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal p...

Full description

Bibliographic Details
Main Authors: Amsalem, O. (Author), Ankri, L. (Author), Ezra-Tsur, E. (Author), Patil, P. (Author), Rivlin-Etzion, M. (Author), Segev, I. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03503nam a2200505Ia 4500
001 10.1371-journal.pcbi.1009754
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009754 
520 3 |a Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs–sustained in the proximal and transient in the distal processes–are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs’ centrifugal preference and its contribution to direction selectivity. Copyright: © 2021 Ezra-Tsur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a Amacrine Cells 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a article 
650 0 4 |a biological model 
650 0 4 |a biology 
650 0 4 |a Computational Biology 
650 0 4 |a embedding 
650 0 4 |a excitation 
650 0 4 |a genetic algorithm 
650 0 4 |a human cell 
650 0 4 |a kinetics 
650 0 4 |a Mice 
650 0 4 |a Models, Neurological 
650 0 4 |a mouse 
650 0 4 |a physiology 
650 0 4 |a retina 
650 0 4 |a Retina 
650 0 4 |a retina amacrine cell 
650 0 4 |a retina amacrine cell 
650 0 4 |a retina ganglion cell 
650 0 4 |a Retinal Ganglion Cells 
650 0 4 |a Visual Pathways 
650 0 4 |a visual system 
700 1 |a Amsalem, O.  |e author 
700 1 |a Ankri, L.  |e author 
700 1 |a Ezra-Tsur, E.  |e author 
700 1 |a Patil, P.  |e author 
700 1 |a Rivlin-Etzion, M.  |e author 
700 1 |a Segev, I.  |e author 
773 |t PLoS Computational Biology