Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data

Controlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient's genetic and clinical characteristics simultaneously for...

Full description

Bibliographic Details
Main Authors: Drzewiecka, D. (Author), Drzyzga, D. (Author), Jakóbkiewicz-Banecka, J. (Author), Kloska, A. (Author), Kotlarz, M. (Author), Mickiewicz, M. (Author), Pukszta, S. (Author), Wygocki, P. (Author), Zieleń, M. (Author), Zieliński, K. (Author)
Format: Article
Language:English
Published: NLM (Medline) 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 03304nam a2200469Ia 4500
001 10.1371-journal.pcbi.1011020
008 230529s2023 CNT 000 0 und d
020 |a 15537358 (ISSN) 
245 1 0 |a Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data 
260 0 |b NLM (Medline)  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1011020 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159245091&doi=10.1371%2fjournal.pcbi.1011020&partnerID=40&md5=6d117b3889c4f5167bdc9b14aa1aa534 
520 3 |a Controlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient's genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched to groups of various MII oocyte counts using ranking, correspondence analysis, and self-organizing map methods. The gradient boosting machine technique was used to train models on a clinical dataset of 8,574 or a clinical-genetic dataset of 516 ovarian stimulations. The clinical-genetic model predicted the number of MII oocytes better than that based on clinical data. Anti-Müllerian hormone level and antral follicle count were the two most important predictors while a genetic feature consisting of sequence variants in the GDF9, LHCGR, FSHB, ESR1, and ESR2 genes was the third. The combined contribution of genetic features important for the prediction was over one-third of that revealed for anti-Müllerian hormone. Predictions of our clinical-genetic model accurately matched individuals' actual outcomes preventing over- or underestimation. The genetic data upgrades the personalized prediction of ovarian stimulation outcomes, thus improving the in vitro fertilization procedure. Copyright: © 2023 Zieliński et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Anti-Mullerian Hormone 
650 0 4 |a chemistry 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a Fertilization in Vitro 
650 0 4 |a genetics 
650 0 4 |a in vitro fertilization 
650 0 4 |a Muellerian inhibiting factor 
650 0 4 |a oocyte 
650 0 4 |a Oocytes 
650 0 4 |a Ovarian Follicle 
650 0 4 |a ovary follicle 
650 0 4 |a ovulation induction 
650 0 4 |a Ovulation Induction 
650 0 4 |a physiology 
650 0 4 |a procedures 
700 1 0 |a Drzewiecka, D.  |e author 
700 1 0 |a Drzyzga, D.  |e author 
700 1 0 |a Jakóbkiewicz-Banecka, J.  |e author 
700 1 0 |a Kloska, A.  |e author 
700 1 0 |a Kotlarz, M.  |e author 
700 1 0 |a Mickiewicz, M.  |e author 
700 1 0 |a Pukszta, S.  |e author 
700 1 0 |a Wygocki, P.  |e author 
700 1 0 |a Zieleń, M.  |e author 
700 1 0 |a Zieliński, K.  |e author 
773 |t PLoS computational biology