Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM

With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating...

Full description

Bibliographic Details
Main Authors: Ahmad, R. (Author), Chen, J. (Author), Li, Q. (Author), Li, W. (Author), Sasaki, K. (Author), Suenaga, H. (Author), Swain, M. (Author)
Format: Article
Language:English
Published: Public Library of Science 2015
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 04607nam a2200865Ia 4500
001 10.1371-journal.pone.0132552
008 220112s2015 CNT 000 0 und d
020 |a 19326203 (ISSN) 
245 1 0 |a Shape optimization for additive manufacturing of removable partial dentures - A new paradigm for prosthetic CAD/CAM 
260 0 |b Public Library of Science  |c 2015 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pone.0132552 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940181513&doi=10.1371%2fjournal.pone.0132552&partnerID=40&md5=6eb20377c0e644f90855cc362698bd04 
520 3 |a With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), tomaximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalizedmodeling, computational optimization, and free-form fabrication enablesmore efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. Copyright: © 2015 Chen et al. 
650 0 4 |a adaptation 
650 0 4 |a additive manufacturing 
650 0 4 |a adult 
650 0 4 |a algorithm 
650 0 4 |a Article 
650 0 4 |a bi directional evolutionary structural optimization 
650 0 4 |a computer aided design 
650 0 4 |a computer aided manufacturing 
650 0 4 |a computer assisted tomography 
650 0 4 |a Computer-Aided Design 
650 0 4 |a contact pressure 
650 0 4 |a controlled study 
650 0 4 |a cost effectiveness analysis 
650 0 4 |a denture design 
650 0 4 |a Denture Design 
650 0 4 |a denture modification 
650 0 4 |a Denture, Partial, Removable 
650 0 4 |a digital imaging 
650 0 4 |a female 
650 0 4 |a finite element analysis 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a hydrostatic pressure 
650 0 4 |a in vitro study 
650 0 4 |a in vivo study 
650 0 4 |a integration 
650 0 4 |a machine learning 
650 0 4 |a mandible 
650 0 4 |a Mandible 
650 0 4 |a materials testing 
650 0 4 |a Materials Testing 
650 0 4 |a mathematical model 
650 0 4 |a middle aged 
650 0 4 |a minimal residual disease 
650 0 4 |a Models, Molecular 
650 0 4 |a molecular model 
650 0 4 |a nanofabrication 
650 0 4 |a outcome assessment 
650 0 4 |a pain assessment 
650 0 4 |a pathology 
650 0 4 |a pressure 
650 0 4 |a Pressure 
650 0 4 |a pressure pain threshold 
650 0 4 |a process design 
650 0 4 |a process optimization 
650 0 4 |a quantitative analysis 
650 0 4 |a removable partial denture 
650 0 4 |a residual ridge resorption 
650 0 4 |a sensitivity analysis 
650 0 4 |a shape optimization 
650 0 4 |a simulation 
650 0 4 |a soft tissue 
650 0 4 |a tooth disease 
650 0 4 |a tooth prosthesis 
700 1 0 |a Ahmad, R.  |e author 
700 1 0 |a Chen, J.  |e author 
700 1 0 |a Li, Q.  |e author 
700 1 0 |a Li, W.  |e author 
700 1 0 |a Sasaki, K.  |e author 
700 1 0 |a Suenaga, H.  |e author 
700 1 0 |a Swain, M.  |e author 
773 |t PLoS ONE