Sparse Feature Aware Noise Removal Technique for Brain Multiple Sclerosis Lesions using Magnetic Resonance Imaging

Medical Resonance Imaging (MRI) is non-radioactive-based medical imaging that provides a super-resolution of tissues. However, because of its complex nature using existing Deep Learning-based noise removal (i.e., Denoising) techniques, the reconstruction quality is poor and time-consuming. An extens...

Full description

Bibliographic Details
Main Authors: Aditya, C.R (Author), Swetha, M.D (Author)
Format: Article
Language:English
Published: Science and Information Organization 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02518nam a2200373Ia 4500
001 10.14569-IJACSA.2022.0130664
008 220718s2022 CNT 000 0 und d
020 |a 2158107X (ISSN) 
245 1 0 |a Sparse Feature Aware Noise Removal Technique for Brain Multiple Sclerosis Lesions using Magnetic Resonance Imaging 
260 0 |b Science and Information Organization  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.14569/IJACSA.2022.0130664 
520 3 |a Medical Resonance Imaging (MRI) is non-radioactive-based medical imaging that provides a super-resolution of tissues. However, because of its complex nature using existing Deep Learning-based noise removal (i.e., Denoising) techniques, the reconstruction quality is poor and time-consuming. An extensive study shows very limited work has been done on Brain Multiple Sclerosis (MS) Lesions MRI. Designing an efficient noise removal technique will aid in improving MRI quality; thereby will aid in achieving better segmentation classification performance. In reducing computing time and enhancing image quality (i.e. reduce noise) this paper presents the Sparse Feature Aware Noise Removal (SFANR) technique for Brain MRI using Convolution Neural Network (CNN) architecture. A sparse-aware feature is incorporated into the patch-wise morphology learning model for removing noise in large-scale MRI MS lesion datasets. Experimental results demonstrated that our model SFANR outperforms all other state-of-art noise removal techniques in terms of Peak-Signal-Noise-Ratio (PSNR), Structural Similarity Index Metric (SSIM) with less running time. © 2022. International Journal of Advanced Computer Science and Applications. All Rights Reserved. 
650 0 4 |a Convolution 
650 0 4 |a Convolution neural network 
650 0 4 |a Convolution neural networks 
650 0 4 |a Deep learning 
650 0 4 |a Denoising 
650 0 4 |a De-noising 
650 0 4 |a Image enhancement 
650 0 4 |a Large dataset 
650 0 4 |a Magnetic resonance imaging 
650 0 4 |a Medical imaging 
650 0 4 |a Medical resonance imaging 
650 0 4 |a Morphology 
650 0 4 |a Morphology learning 
650 0 4 |a Multiple sclerosis 
650 0 4 |a Multiple sclerosis lesions 
650 0 4 |a Noises removal 
650 0 4 |a Resonance 
650 0 4 |a Sparse features 
650 0 4 |a Superresolution 
700 1 |a Aditya, C.R.  |e author 
700 1 |a Swetha, M.D.  |e author 
773 |t International Journal of Advanced Computer Science and Applications  |x 2158107X (ISSN)  |g 13 6, 527-533