Deciphering the physiological response of Escherichia coli under high ATP demand

One long-standing question in microbiology is how microbes buffer perturbations in energy metabolism. In this study, we systematically analyzed the impact of different levels of ATP demand in Escherichia coli under various conditions (aerobic and anaerobic, with and without cell growth). One key fin...

Full description

Bibliographic Details
Main Authors: Boecker, S. (Author), Klamt, S. (Author), Link, H. (Author), Schramm, T. (Author), Slaviero, G. (Author), Steuer, R. (Author), Szymanski, W. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02260nam a2200325Ia 4500
001 10.15252-msb.202110504
008 220427s2021 CNT 000 0 und d
020 |a 17444292 (ISSN) 
245 1 0 |a Deciphering the physiological response of Escherichia coli under high ATP demand 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.15252/msb.202110504 
520 3 |a One long-standing question in microbiology is how microbes buffer perturbations in energy metabolism. In this study, we systematically analyzed the impact of different levels of ATP demand in Escherichia coli under various conditions (aerobic and anaerobic, with and without cell growth). One key finding is that, under all conditions tested, the glucose uptake increases with rising ATP demand, but only to a critical level beyond which it drops markedly, even below wild-type levels. Focusing on anaerobic growth and using metabolomics and proteomics data in combination with a kinetic model, we show that this biphasic behavior is induced by the dual dependency of the phosphofructokinase on ATP (substrate) and ADP (allosteric activator). This mechanism buffers increased ATP demands by a higher glycolytic flux but, as shown herein, it collapses under very low ATP concentrations. Model analysis also revealed two major rate-controlling steps in the glycolysis under high ATP demand, which could be confirmed experimentally. Our results provide new insights on fundamental mechanisms of bacterial energy metabolism and guide the rational engineering of highly productive cell factories. © 2021 The Authors Published under the terms of the CC BY 4.0 license 
650 0 4 |a adenosine triphosphate 
650 0 4 |a Adenosine Triphosphate 
650 0 4 |a energy metabolism 
650 0 4 |a Energy Metabolism 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia coli 
650 0 4 |a genetics 
650 0 4 |a glycolysis 
650 0 4 |a Glycolysis 
650 0 4 |a metabolism 
700 1 |a Boecker, S.  |e author 
700 1 |a Klamt, S.  |e author 
700 1 |a Link, H.  |e author 
700 1 |a Schramm, T.  |e author 
700 1 |a Slaviero, G.  |e author 
700 1 |a Steuer, R.  |e author 
700 1 |a Szymanski, W.  |e author 
773 |t Molecular Systems Biology