A Machine Learning Solution to Predict Elective Orthopedic Surgery Case Duration

We used surgery durations, patient demographic and personnel data taken from the East Kent Hospitals University NHS Foundation Trust (EKHUFT) over a period of 10 years (2010-2019) for a total of 25,352 patients that underwent 15 highest volume elective orthopedic surgeries, to predict future surgery...

Full description

Bibliographic Details
Main Authors: Kunz, H. (Author), Lovegrove, T. (Author), Sahadev, D. (Author)
Format: Article
Language:English
Published: NLM (Medline) 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01715nam a2200373Ia 4500
001 10.3233-SHTI220789
008 220718s2022 CNT 000 0 und d
020 |a 18798365 (ISSN) 
245 1 0 |a A Machine Learning Solution to Predict Elective Orthopedic Surgery Case Duration 
260 0 |b NLM (Medline)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3233/SHTI220789 
520 3 |a We used surgery durations, patient demographic and personnel data taken from the East Kent Hospitals University NHS Foundation Trust (EKHUFT) over a period of 10 years (2010-2019) for a total of 25,352 patients that underwent 15 highest volume elective orthopedic surgeries, to predict future surgery durations for the subset of elective surgeries under consideration. As part of this study, we compared two different ensemble machine learning methods random forest regression (RF) and XGBoost (eXtreme Gradient Boosting) regression. The two models were approximately 5% superior to the existing model used by the hospital scheduling system. 
650 0 4 |a adult 
650 0 4 |a article 
650 0 4 |a climate model 
650 0 4 |a controlled study 
650 0 4 |a demography 
650 0 4 |a elective surgery 
650 0 4 |a female 
650 0 4 |a human 
650 0 4 |a machine learning 
650 0 4 |a Machine learning 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a operation duration 
650 0 4 |a orthopedic surgery 
650 0 4 |a Predictive Modelling 
650 0 4 |a random forest 
650 0 4 |a Surgery Case Duration 
650 0 4 |a trust 
700 1 |a Kunz, H.  |e author 
700 1 |a Lovegrove, T.  |e author 
700 1 |a Sahadev, D.  |e author 
773 |t Studies in health technology and informatics