Effects of Extractive Ammonia Pretreatment on the Ultrastructure and Glycan Composition of Corn Stover

Lignocellulosic biomass is highly recalcitrant and requires a pretreatment step to improve the enzyme accessibility and fermentable sugar yields during enzymatic hydrolysis. Our previous studies demonstrated the rearrangement of the hydrogen bond network within CIII, makes it “amorphous-like” and fa...

Full description

Bibliographic Details
Main Authors: Avci, U. (Author), Balan, V. (Author), da Costa Sousa, L. (Author), Dale, B. (Author), Hahn, M.G (Author), Pattathil, S. (Author), Xu, Y. (Author), Zhou, X. (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2019
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04630nam a2200697Ia 4500
001 10.3389-fenrg.2019.00085
008 220511s2019 CNT 000 0 und d
020 |a 2296598X (ISSN) 
245 1 0 |a Effects of Extractive Ammonia Pretreatment on the Ultrastructure and Glycan Composition of Corn Stover 
260 0 |b Frontiers Media S.A.  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fenrg.2019.00085 
520 3 |a Lignocellulosic biomass is highly recalcitrant and requires a pretreatment step to improve the enzyme accessibility and fermentable sugar yields during enzymatic hydrolysis. Our previous studies demonstrated the rearrangement of the hydrogen bond network within CIII, makes it “amorphous-like” and facilitates easier glucan chain extraction by enzyme. Also, these changes increase the number of solvent-exposed glucan chain hydrogen bonds with water ~50% lowering the surface-bound cellulase by 60–70%. Also, major chemical modifications to lignin occur via ammonolysis of ester-linked ferulate and coumarate linkage. These apparent ultrastructural changes help the enhancement of cellulase activity resulting in higher production of fermentable sugars during enzyme hydrolysis of EA pretreated corn stover relative to Ammonia Fiber Expansion (AFEX) pretreatment. To understand ultra-structural modifications that occur during EA pretreatment, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to examine untreated and EA-pretreated corn stover in an effort to visualize changes in the biomass resulting from the pretreatment. In addition, Immunofluorescence Microscopy was applied to both untreated and pretreated plant cell walls using glycan-directed monoclonal antibodies to reveal possible changes in the spatial distributions of wall glycan epitopes resulting from EA pretreatment. This evaluation was complemented with glycome profiling to determine the glycan epitope compositions of EA-pretreated cell walls relative to untreated and AFEX pretreated corn stover, where lignin and carbohydrates are not extracted. Distinct differences could be observed in the case of xyloglucan, unsubstituted and substituted pectin- and pectic-arabinogalactan-epitope levels in the plant cell wall after EA pretreatment compared with untreated and AFEX-pretreated walls. Liquid ammonia induced de-lignification of cell wall has helped to clearly identify the glucans that are intact after pretreatment. These studies support some of our hypothesis that liquid ammonia cleaves lignin–carbohydrate ester linkages, partially solubilizing lignin and its associated carbohydrates. Specifically, the imaging studies clearly show that some of the cell wall components are extracted as a separate liquid stream during the EA process, thereby creating porous, interconnected tunnel-like networks in the plant cell walls thereby providing better access of carbohydrate polymers to enzymes and thereby increasing the sugar yield from the EA-pretreated biomass. © Copyright © 2019 Avci, Zhou, Pattathil, da Costa Sousa, Hahn, Dale, Xu and Balan. 
650 0 4 |a AFEX 
650 0 4 |a AFEX 
650 0 4 |a Ammonia 
650 0 4 |a Ammonia 
650 0 4 |a Antibodies 
650 0 4 |a Antibodies 
650 0 4 |a antibody 
650 0 4 |a Bioconversion 
650 0 4 |a biofuels 
650 0 4 |a Biofuels 
650 0 4 |a Biomass 
650 0 4 |a Biomass 
650 0 4 |a biomass conversion 
650 0 4 |a Biomass conversion 
650 0 4 |a Cells 
650 0 4 |a Cells 
650 0 4 |a Cellulosic ethanol 
650 0 4 |a Chemical modification 
650 0 4 |a Cytology 
650 0 4 |a Cytology 
650 0 4 |a Enzymatic hydrolysis 
650 0 4 |a Enzymolysis 
650 0 4 |a Epitopes 
650 0 4 |a Esters 
650 0 4 |a extractive ammonia 
650 0 4 |a glycome profiling 
650 0 4 |a glycome profiling 
650 0 4 |a High resolution transmission electron microscopy 
650 0 4 |a Hydrogen bonds 
650 0 4 |a Lignin 
650 0 4 |a lignocellulosic biomass 
650 0 4 |a Lignocellulosic biomass 
650 0 4 |a Liquefied gases 
650 0 4 |a Liquid sugar 
650 0 4 |a Monoclonal antibodies 
650 0 4 |a Plant cell culture 
650 0 4 |a Polysaccharides 
650 0 4 |a pretreatment 
650 0 4 |a Pre-Treatment 
650 0 4 |a Scanning electron microscopy 
700 1 |a Avci, U.  |e author 
700 1 |a Balan, V.  |e author 
700 1 |a da Costa Sousa, L.  |e author 
700 1 |a Dale, B.  |e author 
700 1 |a Hahn, M.G.  |e author 
700 1 |a Pattathil, S.  |e author 
700 1 |a Xu, Y.  |e author 
700 1 |a Zhou, X.  |e author 
773 |t Frontiers in Energy Research