Analytical Model of Crack Width in Hogging Moment Regions of Steel–Concrete Composite Beams Under Fatigue Loading

A modified formula for average crack spacing and a numerical model for crack width in hogging moment regions of steel–concrete composite beams under fatigue loading are proposed in this article. First, the existing calculation formulas and test data of average crack spacing are discussed and summari...

Full description

Bibliographic Details
Main Authors: Luo, Q. (Author), Song, A. (Author), Wan, S. (Author), Xu, H. (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02622nam a2200457Ia 4500
001 10.3389-fmats.2022.859687
008 220510s2022 CNT 000 0 und d
020 |a 22968016 (ISSN) 
245 1 0 |a Analytical Model of Crack Width in Hogging Moment Regions of Steel–Concrete Composite Beams Under Fatigue Loading 
260 0 |b Frontiers Media S.A.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fmats.2022.859687 
520 3 |a A modified formula for average crack spacing and a numerical model for crack width in hogging moment regions of steel–concrete composite beams under fatigue loading are proposed in this article. First, the existing calculation formulas and test data of average crack spacing are discussed and summarized. By introducing the factor of transverse reinforcement spacing, a modified formula of crack spacing is suggested based on the method of non-linear fitting. Then, a numerical model for crack width in negative moment regions under fatigue loading is proposed. In the analytical model, the explicit formulations of slip occurring at both the beam–slab interface and the reinforcement–concrete interface are included by considering fatigue effects, as well as the stress of reinforcement in the cracked section. Finally, a fatigue test on two steel–concrete composite plate beams subjected to hogging moment is designed and conducted. Compared with the crack width evaluation methods in the existing literature, the analysis results of the numerical model show more reasonable agreement with the data of the experimental beams performed in this study. Copyright © 2022 Song, Xu, Wan and Luo. 
650 0 4 |a Analytical models 
650 0 4 |a Calculation formula 
650 0 4 |a Composite beams and girders 
650 0 4 |a Concrete beams and girders 
650 0 4 |a Crack spacing 
650 0 4 |a crack width 
650 0 4 |a Cracks 
650 0 4 |a Crack-width 
650 0 4 |a fatigue 
650 0 4 |a Fatigue loadings 
650 0 4 |a Fatigue of materials 
650 0 4 |a Fatigue testing 
650 0 4 |a hogging moment region 
650 0 4 |a Hogging moment region 
650 0 4 |a Hogging moments 
650 0 4 |a Numerical methods 
650 0 4 |a numerical model 
650 0 4 |a Numerical models 
650 0 4 |a Reinforcement 
650 0 4 |a Reinforcement spacing 
650 0 4 |a Steel concrete composite beam 
650 0 4 |a steel–concrete composite beam 
650 0 4 |a Test data 
650 0 4 |a Transverse reinforcement 
700 1 |a Luo, Q.  |e author 
700 1 |a Song, A.  |e author 
700 1 |a Wan, S.  |e author 
700 1 |a Xu, H.  |e author 
773 |t Frontiers in Materials