Ipsilesional Mu Rhythm Desynchronization Correlates With Improvements in Affected Hand Grip Strength and Functional Connectivity in Sensorimotor Cortices Following BCI-FES Intervention for Upper Extremity in Stroke Survivors

Stroke is a leading cause of acquired long-term upper extremity motor disability. Current standard of care trajectories fail to deliver sufficient motor rehabilitation to stroke survivors. Recent research suggests that use of brain-computer interface (BCI) devices improves motor function in stroke s...

Full description

Bibliographic Details
Main Authors: Bjorklund, E. (Author), Caldera, K.E (Author), Gjini, K. (Author), Gloe, S. (Author), Nair, V.A (Author), Prabhakaran, V. (Author), Remsik, A.B (Author), Rivera, C.A (Author), Romero, S. (Author), van Kan, P.L.E (Author), Williams, J.C (Author), Williams, L., Jr (Author), Young, B.M (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2021
Subjects:
Mu
Online Access:View Fulltext in Publisher
LEADER 04746nam a2200685Ia 4500
001 10.3389-fnhum.2021.725645
008 220427s2021 CNT 000 0 und d
020 |a 16625161 (ISSN) 
245 1 0 |a Ipsilesional Mu Rhythm Desynchronization Correlates With Improvements in Affected Hand Grip Strength and Functional Connectivity in Sensorimotor Cortices Following BCI-FES Intervention for Upper Extremity in Stroke Survivors 
260 0 |b Frontiers Media S.A.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnhum.2021.725645 
520 3 |a Stroke is a leading cause of acquired long-term upper extremity motor disability. Current standard of care trajectories fail to deliver sufficient motor rehabilitation to stroke survivors. Recent research suggests that use of brain-computer interface (BCI) devices improves motor function in stroke survivors, regardless of stroke severity and chronicity, and may induce and/or facilitate neuroplastic changes associated with motor rehabilitation. The present sub analyses of ongoing crossover-controlled trial NCT02098265 examine first whether, during movements of the affected hand compared to rest, ipsilesional Mu rhythm desynchronization of cerebral cortical sensorimotor areas [Brodmann’s areas (BA) 1-7] is localized and tracks with changes in grip force strength. Secondly, we test the hypothesis that BCI intervention results in changes in frequency-specific directional flow of information transmission (direct path functional connectivity) in BA 1-7 by measuring changes in isolated effective coherence (iCoh) between cerebral cortical sensorimotor areas thought to relate to electrophysiological signatures of motor actions and motor learning. A sample of 16 stroke survivors with right hemisphere lesions (left hand motor impairment), received a maximum of 18–30 h of BCI intervention. Electroencephalograms were recorded during intervention sessions while outcome measures of motor function and capacity were assessed at baseline and completion of intervention. Greater desynchronization of Mu rhythm, during movements of the impaired hand compared to rest, were primarily localized to ipsilesional sensorimotor cortices (BA 1-7). In addition, increased Mu desynchronization in the ipsilesional primary motor cortex, Post vs. Pre BCI intervention, correlated significantly with improvements in hand function as assessed by grip force measurements. Moreover, the results show a significant change in the direction of causal information flow, as measured by iCoh, toward the ipsilesional motor (BA 4) and ipsilesional premotor cortices (BA 6) during BCI intervention. Significant iCoh increases from ipsilesional BA 4 to ipsilesional BA 6 were observed in both Mu [8–12 Hz] and Beta [18–26 Hz] frequency ranges. In summary, the present results are indicative of improvements in motor capacity and behavior, and they are consistent with the view that BCI-FES intervention improves functional motor capacity of the ipsilesional hemisphere and the impaired hand. © Copyright © 2021 Remsik, Gjini, Williams, van Kan, Gloe, Bjorklund, Rivera, Romero, Young, Nair, Caldera, Williams and Prabhakaran. 
650 0 4 |a adult 
650 0 4 |a aged 
650 0 4 |a Article 
650 0 4 |a Beta 
650 0 4 |a brain electrophysiology 
650 0 4 |a brain-computer interface 
650 0 4 |a cerebrovascular accident 
650 0 4 |a clinical article 
650 0 4 |a controlled clinical trial 
650 0 4 |a controlled study 
650 0 4 |a crossover procedure 
650 0 4 |a electroencephalogram 
650 0 4 |a evoked response 
650 0 4 |a female 
650 0 4 |a functional connectivity 
650 0 4 |a functional electrical stimulation 
650 0 4 |a grip strength 
650 0 4 |a hand function 
650 0 4 |a human 
650 0 4 |a iCoh 
650 0 4 |a male 
650 0 4 |a motor dysfunction 
650 0 4 |a motor function 
650 0 4 |a motor learning 
650 0 4 |a motor performance 
650 0 4 |a Mu 
650 0 4 |a mu rhythm 
650 0 4 |a primary motor cortex 
650 0 4 |a right hemisphere 
650 0 4 |a sensorimotor cortex 
650 0 4 |a sensorimotor rhythm 
650 0 4 |a striate cortex 
650 0 4 |a stroke 
650 0 4 |a stroke survivor 
700 1 |a Bjorklund, E.  |e author 
700 1 |a Caldera, K.E.  |e author 
700 1 |a Gjini, K.  |e author 
700 1 |a Gloe, S.  |e author 
700 1 |a Nair, V.A.  |e author 
700 1 |a Prabhakaran, V.  |e author 
700 1 |a Remsik, A.B.  |e author 
700 1 |a Rivera, C.A.  |e author 
700 1 |a Romero, S.  |e author 
700 1 |a van Kan, P.L.E.  |e author 
700 1 |a Williams, J.C.  |e author 
700 1 |a Williams, L., Jr.  |e author 
700 1 |a Young, B.M.  |e author 
773 |t Frontiers in Human Neuroscience