Layout Design and Verification of a Space Payload Distributed Capture and Lock System

In this paper, the mechanism scheme and parametric design of a capture and lock system are studied based on the high reliability of locking systems. By analyzing the workflow and boundary conditions of the capture and lock system, a positioning design is carried out by combining it with the layout o...

Full description

Bibliographic Details
Main Authors: Hu, X. (Author), Huo, W. (Author), Wang, G. (Author), Wang, J. (Author), Xu, G. (Author), Yao, Y. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02025nam a2200253Ia 4500
001 10.3390-aerospace9070345
008 220718s2022 CNT 000 0 und d
020 |a 22264310 (ISSN) 
245 1 0 |a Layout Design and Verification of a Space Payload Distributed Capture and Lock System 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/aerospace9070345 
520 3 |a In this paper, the mechanism scheme and parametric design of a capture and lock system are studied based on the high reliability of locking systems. By analyzing the workflow and boundary conditions of the capture and lock system, a positioning design is carried out by combining it with the layout of a distributed capture and lock system. Based on the error domain for the passive end in the presence of errors in the manipulator, planning for the capture trajectory and configuration of the design for the active end are carried out. The influence of the passive end on the dynamic performance of the system is comprehensively considered to design the configuration of the passive end. According to the structure of the active end, a mathematical model for the capture and lock mechanism is established, and an analysis of the influence of trajectory parameters on the active end is carried out. The layout design of the capture hook for the active end is carried out based on an analysis of the influence of its layout on posture adjustment. The large-tolerance capability of the system layout is verified with a tolerance simulation analysis and a ground simulation capture test. © 2022 by the authorsLicensee MDPI, Basel, Switzerland. 
650 0 4 |a capture experiment 
650 0 4 |a distributed capture and lock system 
650 0 4 |a layout design 
650 0 4 |a structural design 
650 0 4 |a trajectory planning 
700 1 |a Hu, X.  |e author 
700 1 |a Huo, W.  |e author 
700 1 |a Wang, G.  |e author 
700 1 |a Wang, J.  |e author 
700 1 |a Xu, G.  |e author 
700 1 |a Yao, Y.  |e author 
773 |t Aerospace