Appraising the Optimal Power Flow and Generation Capacity in Existing Power Grid Topology with Increase in Energy Demand

Several socioeconomic factors such as industrialization, population growth, evolution of modern technologies, urbanization and other social activities do heavily influence the increase in energy demand. A thorough understanding of the effects of energy demand to power grid is highly essential for ef...

Full description

Bibliographic Details
Main Authors: Hamam, Y. (Author), Nnachi, G.U (Author), Richards, C.G (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03054nam a2200601Ia 4500
001 10.3390-en15072522
008 220425s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Appraising the Optimal Power Flow and Generation Capacity in Existing Power Grid Topology with Increase in Energy Demand 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15072522 
520 3 |a Several socioeconomic factors such as industrialization, population growth, evolution of modern technologies, urbanization and other social activities do heavily influence the increase in energy demand. A thorough understanding of the effects of energy demand to power grid is highly essential for effective planning and operation of a power system network in terms of the available generation and transmission line capacities. This paper presents an optimal power flow (OPF) with the aim to determine the exact nodes through which the network capacities can be increased. The problem is formulated as a Direct Current (DC) OPF model, which is a linearized version of an Alternating Current (AC) OPF model. The DC-OPF model was solved as a single period OPF problem. The model was tested in several case studies using the topology of the IEEE test systems, and the computation speeds of the different cases were compared. The results suggested dual variables of the problem’s constraints as an extra tool for the network designer to see where to increase the network capacities. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Acoustic generators 
650 0 4 |a Alternating current 
650 0 4 |a alternating current model 
650 0 4 |a Alternating current model 
650 0 4 |a Constraint relaxation 
650 0 4 |a cost of constraint relaxation 
650 0 4 |a Cost of constraint relaxation 
650 0 4 |a Current modeling 
650 0 4 |a Deep learning 
650 0 4 |a deep reinforcement learning 
650 0 4 |a direct current model 
650 0 4 |a Direct current model 
650 0 4 |a Direct-current 
650 0 4 |a Electric load flow 
650 0 4 |a Electric power transmission 
650 0 4 |a Electric power transmission networks 
650 0 4 |a energy demand 
650 0 4 |a Energy demands 
650 0 4 |a Energy management 
650 0 4 |a Generation capacity 
650 0 4 |a linear programming 
650 0 4 |a Linear programming 
650 0 4 |a Linear-programming 
650 0 4 |a maximum generation capacity 
650 0 4 |a Maximum generation capacity 
650 0 4 |a Maximum power 
650 0 4 |a maximum power flow 
650 0 4 |a Maximum power flow 
650 0 4 |a Optimal generation 
650 0 4 |a optimal generation capacity 
650 0 4 |a Optimal generation capacity 
650 0 4 |a optimal power flow 
650 0 4 |a Optimal power flows 
650 0 4 |a Population statistics 
650 0 4 |a Power flows 
650 0 4 |a Reinforcement learning 
650 0 4 |a Topology 
700 1 |a Hamam, Y.  |e author 
700 1 |a Nnachi, G.U.  |e author 
700 1 |a Richards, C.G.  |e author 
773 |t Energies