Numerical Investigation and Optimization of Cooling Flow Field Design for Proton Exchange Membrane Fuel Cell

High temperatures and non-uniform temperatures both have a negative bearing on the performance of proton exchange membrane fuel cells. The temperature of proton exchange membrane fuel cells can be lowered by reasonably distributed cooling channels. The flow field distribution of five different cooli...

Full description

Bibliographic Details
Main Authors: Chen, L. (Author), Huang, Y. (Author), Li, T. (Author), Liu, Y. (Author), Ma, Z. (Author), Song, J. (Author), Zhang, X. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03089nam a2200541Ia 4500
001 10.3390-en15072609
008 220425s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Numerical Investigation and Optimization of Cooling Flow Field Design for Proton Exchange Membrane Fuel Cell 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15072609 
520 3 |a High temperatures and non-uniform temperatures both have a negative bearing on the performance of proton exchange membrane fuel cells. The temperature of proton exchange membrane fuel cells can be lowered by reasonably distributed cooling channels. The flow field distribution of five different cooling plates is designed, and the temperature uniformity, pressure drop and velocity of each cooling flow field are analyzed by computational fluid dynamics technology. The results show that while the pressure drop is high, the flow channel distribution of a multi-spiral flow field and honeycomb structure flow field contribute more to improving the temperature uniformity. As the coolant is blocked by the uniform plate, it is found that although the flow field channel with a uniform plate has poor performance in terms of temperature uniformity, its heat dissipation capacity is still better than that of the traditional serpentine flow field. The multi-spiral flow field has the strongest ability to maintain the temperature stability in the cooling plate when the heat flux increases. The increase in Reynolds number, although increasing the pressure drop, can reduce the maximum temperature and temperature difference of the flow field, ameliorate the temperature uniformity and improve the heat transfer capacity of the cooling plate. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Channel flow 
650 0 4 |a computational fluid dynamics 
650 0 4 |a Computational fluid dynamics 
650 0 4 |a Cooling 
650 0 4 |a Cooling flows 
650 0 4 |a Cooling plates 
650 0 4 |a Drops 
650 0 4 |a flow field design 
650 0 4 |a Flow fields 
650 0 4 |a Flow-field design 
650 0 4 |a Heat flux 
650 0 4 |a honeycomb structure flow field 
650 0 4 |a Honeycomb structure flow field 
650 0 4 |a Honeycomb structures 
650 0 4 |a Numerical investigations 
650 0 4 |a Numerical optimizations 
650 0 4 |a Plates (structural components) 
650 0 4 |a Pressure drop 
650 0 4 |a proton exchange membrane fuel cell 
650 0 4 |a Proton exchange membrane fuel cells (PEMFC) 
650 0 4 |a Proton-exchange membranes fuel cells 
650 0 4 |a Reynolds number 
650 0 4 |a Serpentine 
650 0 4 |a Spiral flow 
650 0 4 |a Structural optimisations 
650 0 4 |a structural optimization 
650 0 4 |a Structural optimization 
650 0 4 |a Temperature uniformity 
700 1 |a Chen, L.  |e author 
700 1 |a Huang, Y.  |e author 
700 1 |a Li, T.  |e author 
700 1 |a Liu, Y.  |e author 
700 1 |a Ma, Z.  |e author 
700 1 |a Song, J.  |e author 
700 1 |a Zhang, X.  |e author 
773 |t Energies