Thermal Design of a Biohydrogen Production System Driven by Integrated Gasification Combined Cycle Waste Heat Using Dynamic Simulation

Utilizing biological processes for hydrogen production via gasification is a promising alternative method to coal gasification. The present study proposes a dynamic simulation model that uses a one-dimensional heat-transfer analysis method to simulate a biohydrogen production system. The proposed mo...

Full description

Bibliographic Details
Main Authors: Ahn, J. (Author), Fakhrulrezza, M. (Author), Lee, H.-J (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02817nam a2200457Ia 4500
001 10.3390-en15092976
008 220517s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Thermal Design of a Biohydrogen Production System Driven by Integrated Gasification Combined Cycle Waste Heat Using Dynamic Simulation 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15092976 
520 3 |a Utilizing biological processes for hydrogen production via gasification is a promising alternative method to coal gasification. The present study proposes a dynamic simulation model that uses a one-dimensional heat-transfer analysis method to simulate a biohydrogen production system. The proposed model is based on an existing experimental design setup. It is used to simulate a biohydrogen production system driven by the waste heat from an integrated gasification combined cycle (IGCC) power plant equipped with carbon capture and storage technologies. The data from the simulated results are compared with the experimental measurement data to validate the developed model’s reliability. The results show good agreement between the experimental data and the developed model. The relative root-mean-square error for the heat storage, feed-mixing, and bioreactor tanks is 1.26%, 3.59%, and 1.78%, respectively. After the developed model’s reliability is confirmed, it is used to simulate and optimize the biohydrogen production system inside the IGCC power plant. The bioreactor tank’s time constant can be improved when reducing the operating volume of the feed-mixing tank by the scale factors of 0.75 and 0.50, leading to a 15.76% and 31.54% faster time constant, respectively, when compared with the existing design. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Bio-hydrogen 
650 0 4 |a bio-hydrogen application 
650 0 4 |a Bio-hydrogen application 
650 0 4 |a Bio-hydrogen production 
650 0 4 |a Bioreactors 
650 0 4 |a Carbon capture 
650 0 4 |a Developed model 
650 0 4 |a Digital storage 
650 0 4 |a dynamic simulation 
650 0 4 |a Dynamics simulation 
650 0 4 |a heat and mass transfer 
650 0 4 |a Heat and mass transfer 
650 0 4 |a Heat transfer 
650 0 4 |a Hydrogen production 
650 0 4 |a Hydrogen storage 
650 0 4 |a Integrated Gasification Combined Cycle power plants 
650 0 4 |a Mass transfer 
650 0 4 |a Mean square error 
650 0 4 |a Mixing 
650 0 4 |a Production system 
650 0 4 |a Systems-driven 
650 0 4 |a Tanks (containers) 
650 0 4 |a Waste heat 
650 0 4 |a waste heat application 
650 0 4 |a Waste heat application 
700 1 |a Ahn, J.  |e author 
700 1 |a Fakhrulrezza, M.  |e author 
700 1 |a Lee, H.-J.  |e author 
773 |t Energies