Dehydrogenation of Metal Hydride Reactor-Phase Change Materials Coupled with Light-Duty Fuel Cell Vehicles

The popularity of using phase change materials (PCMs) for heat storage and recovery of metal hydrides’ reaction has grown tremendously. However, a fundamental study of the coupling of such a system with a low-temperature PEM (polymer electrolyte membrane) fuel cell is still lacking. This work presen...

Full description

Bibliographic Details
Main Authors: Gęca, M.J (Author), Nyamsi, S.N (Author), Tolj, I. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02680nam a2200457Ia 4500
001 10.3390-en15092982
008 220517s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Dehydrogenation of Metal Hydride Reactor-Phase Change Materials Coupled with Light-Duty Fuel Cell Vehicles 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15092982 
520 3 |a The popularity of using phase change materials (PCMs) for heat storage and recovery of metal hydrides’ reaction has grown tremendously. However, a fundamental study of the coupling of such a system with a low-temperature PEM (polymer electrolyte membrane) fuel cell is still lacking. This work presents a numerical investigation of the dehydrogenation performance of a metal hydride reactor (MHR)-PCM system coupled with a fuel cell. It is shown that to supply the fuel cell with a constant H2 flow rate, the PCM properties need to be in an optimized range. The effects of some design parameters (PCM freezing point, the initial desorption temperature, the nature and the size of the PCM) on the dehydrogenation performance of MHR-PCM system are discussed in detail. The results showed that the MHR-PCM could supply hydrogen at 12 NL/min only for 20 min maximum due to the significant endothermic effect occurring in the MHR. However, reducing the requested H2 flowrate to 5.5 NL/min, the hydrogen desorption to a fuel cell is prolonged to 79 min. Moreover, this system can accommodate different PCMs such as paraffin and salt hydrates for comparable performance. This study demonstrates the ability of MHR-PCM systems to be used as range extenders in light-duty fuel cell vehicles. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Cell/B.E 
650 0 4 |a Cell-be 
650 0 4 |a Desorption 
650 0 4 |a Fuel cell vehicles 
650 0 4 |a Hydrides 
650 0 4 |a Hydrogen storage 
650 0 4 |a hydrogen supply 
650 0 4 |a Hydrogen supply 
650 0 4 |a Light-duty 
650 0 4 |a Light-duty fuel cell vehicle 
650 0 4 |a light-duty fuel cell vehicles 
650 0 4 |a Material systems 
650 0 4 |a metal hydrides 
650 0 4 |a Metal recovery 
650 0 4 |a Metal-hydrides 
650 0 4 |a Metals 
650 0 4 |a Performance 
650 0 4 |a phase change materials 
650 0 4 |a Phase change materials 
650 0 4 |a Polyelectrolytes 
650 0 4 |a Proton exchange membrane fuel cells (PEMFC) 
650 0 4 |a range extender 
650 0 4 |a Range extenders 
650 0 4 |a Temperature 
650 0 4 |a Waste heat 
700 1 |a Gęca, M.J.  |e author 
700 1 |a Nyamsi, S.N.  |e author 
700 1 |a Tolj, I.  |e author 
773 |t Energies