FPGA-Based Real-Time Simulation of Dual-Port Submodule MMC–HVDC System

Aiming at the problems of the high switch numbers, complex working mechanisms, and complicated real-time simulation of modular multilevel converters (MMCs) composed of dual-port submodules, in this study, we designed a unified equivalent model of the multiple submodule network by analyzing the combi...

Full description

Bibliographic Details
Main Authors: Jin, Z. (Author), Wang, S. (Author), Wu, Y. (Author), Zhang, B. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02552nam a2200409Ia 4500
001 10.3390-en15134624
008 220718s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a FPGA-Based Real-Time Simulation of Dual-Port Submodule MMC–HVDC System 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15134624 
520 3 |a Aiming at the problems of the high switch numbers, complex working mechanisms, and complicated real-time simulation of modular multilevel converters (MMCs) composed of dual-port submodules, in this study, we designed a unified equivalent model of the multiple submodule network by analyzing the combination of parallel submodules in the bridge arm. The proposed model decouples the submodules that do not affect each other in the subnetwork calculation process, thereby reducing the number of prestored parameters in the subnetwork simulation. In the Xilinx Virtex-7 FPGA VC709 (Xilinx Corporation, San Jose, CA, USA) development board, we replaced the inline computation combined with the prestorage of parameters with the proposed equivalent model to optimize the execution unit structure and redesigned the FPGA-Based Real-Time Digital Solver (FRTDS). Taking the P-FBSM-based MMC–HVDC system as the simulation object, we performed a real-time simulation with a step size of 10 µs, which verified the effectiveness of the proposed model and the improvement in the hardware. We compared the results with the offline MATLAB/Simulink simulation results to verify the accuracy of the simulation. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Electromagnetic transient model 
650 0 4 |a electromagnetic transient modeling 
650 0 4 |a Field programmable gate arrays (FPGA) 
650 0 4 |a Field programmables 
650 0 4 |a Field-programmable gate array 
650 0 4 |a field-programmable gate array (FPGA) 
650 0 4 |a HVDC power transmission 
650 0 4 |a MATLAB 
650 0 4 |a Modular multilevel converter 
650 0 4 |a modular multilevel converter (MMC) 
650 0 4 |a Modulars 
650 0 4 |a Multilevel converter 
650 0 4 |a Power converters 
650 0 4 |a Prestored parameter 
650 0 4 |a prestored parameters 
650 0 4 |a Programmable gate array 
650 0 4 |a real-time simulation 
650 0 4 |a Realtime simulation (RTS) 
650 0 4 |a Submodules 
650 0 4 |a Transients 
700 1 |a Jin, Z.  |e author 
700 1 |a Wang, S.  |e author 
700 1 |a Wu, Y.  |e author 
700 1 |a Zhang, B.  |e author 
773 |t Energies