Self-Supporting NiFe Layered Double Hydroxide “Nanoflower” Cluster Anode Electrode for an Efficient Alkaline Anion Exchange Membrane Water Electrolyzer

The development of an efficient and durable oxygen evolution reaction (OER) electrode is needed to solve the bottleneck in the application of an anion exchange membrane water electrolyzer (AEMWE). In this work, the self-supporting NiFe layered double hydroxides (NiFe LDHs) “nanoflower” cluster OER e...

Full description

Bibliographic Details
Main Authors: Chi, J. (Author), Guo, D. (Author), Jiang, G. (Author), Shao, Z. (Author), Yu, H. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03089nam a2200493Ia 4500
001 10.3390-en15134645
008 220718s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Self-Supporting NiFe Layered Double Hydroxide “Nanoflower” Cluster Anode Electrode for an Efficient Alkaline Anion Exchange Membrane Water Electrolyzer 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15134645 
520 3 |a The development of an efficient and durable oxygen evolution reaction (OER) electrode is needed to solve the bottleneck in the application of an anion exchange membrane water electrolyzer (AEMWE). In this work, the self-supporting NiFe layered double hydroxides (NiFe LDHs) “nanoflower” cluster OER electrode directly grown on the surface of nickel fiber felt (Ni fiber) was synthesized by a one-step impregnation at ambient pressure and temperature. The self-supporting NiFe LDHs/Ni fiber electrode showed excellent activity and stability in a three-electrode system and as the anode of AEMWE. In a three-electrode system, the NiFe LDHs/Ni fiber electrode showed excellent OER performance with an overpotential of 208 mV at a current density of 10 mA cm−2 in 1 M KOH. The NiFe LDHs/Ni fiber electrode was used as the anode of the AEMWE, showing high cell performance with a current density of 0.5 A cm−2 at 1.68 V and a stability test for 200 h in 1 M KOH at 70◦C. The electrocatalytic performance of NiFe LDHs/Ni fiber electrode is due to the special morphological structure of “nanoflower” cluster petals stretching outward to produce the “tip effect,” which is beneficial for the exposure of active sites at the edge and mass transfer under high current density. The experimental results show that the NiFe LDHs/Ni fiber electrode synthesized by the one-step impregnation method has the advantages of good activity and low cost, and it is promising for industrial application. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Anion exchange 
650 0 4 |a Anion exchange membrane water electrolyze 
650 0 4 |a anion exchange membrane water electrolyzer (AEMWE) 
650 0 4 |a Anodes 
650 0 4 |a Binary alloys 
650 0 4 |a Costs 
650 0 4 |a Current density 
650 0 4 |a Electrolytic cells 
650 0 4 |a Exchange membranes 
650 0 4 |a Fiber felts 
650 0 4 |a Fibers 
650 0 4 |a Impregnation 
650 0 4 |a Ions 
650 0 4 |a Iron alloys 
650 0 4 |a Layered-double hydroxides 
650 0 4 |a Mass transfer 
650 0 4 |a Nanoflowers 
650 0 4 |a Nickel fiber 
650 0 4 |a Nife layered double hydroxide 
650 0 4 |a NiFe layered double hydroxides (NiFe LDHs) 
650 0 4 |a Oxygen 
650 0 4 |a Oxygen evolution reaction 
650 0 4 |a oxygen evolution reaction (OER) 
650 0 4 |a Potassium hydroxide 
650 0 4 |a Synthesised 
650 0 4 |a Water electrolyzer 
700 1 |a Chi, J.  |e author 
700 1 |a Guo, D.  |e author 
700 1 |a Jiang, G.  |e author 
700 1 |a Shao, Z.  |e author 
700 1 |a Yu, H.  |e author 
773 |t Energies