Magnetic Circuit Design and Experiment of Novel Lorentz Magnetic Bearing with Double Air Gap

A uniform magnetic density distribution in the air gap is key for the Lorentz magnetic bearing to achieve high precision control and large torque output. To overcome the small magnetic field strength in an explicit magnetic bearing and a high magnetic density fluctuation rate in an implicit Lorentz...

Full description

Bibliographic Details
Main Authors: Cao, S. (Author), Li, J. (Author), Liu, Q. (Author), Niu, P. (Author), Sheng, S. (Author), Wang, W. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02774nam a2200457Ia 4500
001 10.3390-en15134830
008 220718s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Magnetic Circuit Design and Experiment of Novel Lorentz Magnetic Bearing with Double Air Gap 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15134830 
520 3 |a A uniform magnetic density distribution in the air gap is key for the Lorentz magnetic bearing to achieve high precision control and large torque output. To overcome the small magnetic field strength in an explicit magnetic bearing and a high magnetic density fluctuation rate in an implicit Lorentz magnetic bearing, a second air gap design method is proposed based on the maximum magnetic density distribution in the winding area. A novel Lorentz bearing with a double second air gap is designed. The maximum magnetic field strength in the winding area is calculated by the finite element method, and the structure of the double second air gap is designed. To reduce the calculation error of the magnetic field strength, the division of the reluctance by the magnetic induction line is proposed. The reluctance calculation formula is given. Based on Ohm’s law, the calculation of the magnetic field strength is obtained. Finally, a prototype of the novel Lorentz magnetic bearing is made. The magnetic field strength in the winding area and the magnetic density fluctuation rate are measured with a magnetic density measurement instrument. The maximum magnetic flux density in the winding area is 0.631 T, and the magnetic field strength is 0.58%. Less difference is found between the measurement result and the finite element result. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a air gap magnetic density 
650 0 4 |a Air gap magnetic density 
650 0 4 |a Air-gaps 
650 0 4 |a Density distributions 
650 0 4 |a Density fluctuation 
650 0 4 |a Design 
650 0 4 |a finite element method 
650 0 4 |a Finite element method 
650 0 4 |a Fluctuation rate 
650 0 4 |a Integrated circuit manufacture 
650 0 4 |a Lorentz 
650 0 4 |a lorentz magnetic bearing 
650 0 4 |a Lorentz magnetic bearing 
650 0 4 |a Magnetic bearings 
650 0 4 |a Magnetic circuits 
650 0 4 |a Magnetic density 
650 0 4 |a magnetic field distribution 
650 0 4 |a Magnetic field distribution 
650 0 4 |a Magnetic field strengths 
650 0 4 |a Magnetic fields 
650 0 4 |a Timing circuits 
650 0 4 |a Winding 
700 1 |a Cao, S.  |e author 
700 1 |a Li, J.  |e author 
700 1 |a Liu, Q.  |e author 
700 1 |a Niu, P.  |e author 
700 1 |a Sheng, S.  |e author 
700 1 |a Wang, W.  |e author 
773 |t Energies