An Ab Initio RRKM-Based Master Equation Study for Kinetics of OH-Initiated Oxidation of 2-Methyltetrahydrofuran and Its Implications in Kinetic Modeling

Cyclic ethers (CEs) can be promising future biofuel candidates. Most CEs possess physico-chemical and combustion indicators comparable to conventional fuels, making them suitable for internal combustion engines. This work computationally investigates the kinetic behaviors of hydrogen abstraction fro...

Full description

Bibliographic Details
Main Authors: Bui, T.Q (Author), Giri, B.R (Author), Huynh, L.K (Author), Mai, T.V.T (Author), Mauss, F. (Author), Nhung, N.T.A (Author), Quy, P.T (Author), Shrestha, K.P (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04082nam a2200565Ia 4500
001 10.3390-en16093730
008 230526s2023 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a An Ab Initio RRKM-Based Master Equation Study for Kinetics of OH-Initiated Oxidation of 2-Methyltetrahydrofuran and Its Implications in Kinetic Modeling 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en16093730 
520 3 |a Cyclic ethers (CEs) can be promising future biofuel candidates. Most CEs possess physico-chemical and combustion indicators comparable to conventional fuels, making them suitable for internal combustion engines. This work computationally investigates the kinetic behaviors of hydrogen abstraction from 2-methyl tetrahydrofuran (2MTHF), one of the promising CEs, by hydroxyl radicals under combustion and atmospheric relevant conditions. The various reaction pathways were explored using the CCSD(T)/cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory. The Rice–Ramsperger–Kassel–Marcus-based master equation (RRKM-ME) rate model, including treatments for hindered internal rotation and tunneling, was employed to describe time-dependent species profiles and pressure and temperature-dependent rate coefficients. Our kinetic model revealed that the H-abstraction proceeds via an addition-elimination mechanism forming reaction complexes at both the entrance and exit channels. Eight different reaction channels yielding five radical products were located. The reaction exhibited complex kinetics yielding a U-shaped Arrhenius behavior. An unusual occurrence of negative temperature dependence was observed at low temperatures, owing to the negative barrier height for the hydrogen abstraction reaction from the C-H bond at the vicinity of the O-atom. A shift in the reaction mechanism was observed with the dominance of the abstraction at Cα-H of 2MTHF ring (causing negative-T dependence) and at CH3 (positive-T dependence) at low and high temperatures, respectively. Interestingly, the pressure effect was observed at low temperatures, revealing the kinetic significance of the pre-reaction complex. Under atmospheric pressure, our theoretical rate coefficients showed excellent agreement with the available literature data. Our model nicely captured the negative temperature-dependent behaviors at low temperatures. Our predicted global rate coefficients can be expressed as k (T, 760 Torr) = 3.55 × 101 × T−4.72 × exp [−340.0 K/T] + 8.21 × 10−23 × T3.49 × exp [918.8 K/T] (cm3/molecule/s). Our work provides a detailed kinetic picture of the OH-initiated oxidation kinetics of 2MTHF. Hence, this information is useful for building a kinetic me chanism for methylated cyclic ethers. © 2023 by the authors. 
650 0 4 |a 2-methyl tetrahydrofuran 
650 0 4 |a 2-methyltetrahydrofuran 
650 0 4 |a ab initio 
650 0 4 |a Ab initio 
650 0 4 |a Abstracting 
650 0 4 |a Atmospheric chemistry 
650 0 4 |a Atmospheric pressure 
650 0 4 |a Atmospheric temperature 
650 0 4 |a Combustion 
650 0 4 |a Cyclic ether 
650 0 4 |a Free radicals 
650 0 4 |a Hydrogen 
650 0 4 |a Indicators (chemical) 
650 0 4 |a kinetic modeling 
650 0 4 |a Kinetic models 
650 0 4 |a Kinetic theory 
650 0 4 |a Kinetics 
650 0 4 |a Lows-temperatures 
650 0 4 |a Master equations 
650 0 4 |a Nitrogen oxides 
650 0 4 |a OH - 
650 0 4 |a OH radical 
650 0 4 |a OH radicals 
650 0 4 |a Pressure effects 
650 0 4 |a Reaction kinetics 
650 0 4 |a Rice–ramsperge–kassel–marcu-based master equation calculation 
650 0 4 |a Rice-ramsperger-kassel-marcus 
650 0 4 |a RRKM-ME calculations 
650 0 4 |a Temperature distribution 
700 1 0 |a Bui, T.Q.  |e author 
700 1 0 |a Giri, B.R.  |e author 
700 1 0 |a Huynh, L.K.  |e author 
700 1 0 |a Mai, T.V.T.  |e author 
700 1 0 |a Mauss, F.  |e author 
700 1 0 |a Nhung, N.T.A.  |e author 
700 1 0 |a Quy, P.T.  |e author 
700 1 0 |a Shrestha, K.P.  |e author 
773 |t Energies  |x 19961073 (ISSN)  |g 16 9