Piezoelectric MEMS Mirror with Lissajous Scanning for Automobile Adaptive Laser Headlights

The emergence of smart headlights with reconfigurable light distributions that provide optimal illumination, highlight road objects, and project symbols to communicate with traffic participants further enhances road safety. Integrating all these functions in a single headlight usually suffers from i...

Full description

Bibliographic Details
Main Authors: Ji, Y. (Author), Li, J. (Author), Liu, K. (Author), Xu, B. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03606nam a2200505Ia 4500
001 10.3390-mi13070996
008 220718s2022 CNT 000 0 und d
020 |a 2072666X (ISSN) 
245 1 0 |a Piezoelectric MEMS Mirror with Lissajous Scanning for Automobile Adaptive Laser Headlights 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/mi13070996 
520 3 |a The emergence of smart headlights with reconfigurable light distributions that provide optimal illumination, highlight road objects, and project symbols to communicate with traffic participants further enhances road safety. Integrating all these functions in a single headlight usually suffers from issues of bulky multi‐functional add‐on modules with high cost or the use of conventional spatial light modulators with low optical efficiency and complex thermal design requirements. This paper presents a novel laser headlight prototype based on biaxially resonant microelec-tromechanical systems (MEMS) mirror light modulator for mapping blue laser patterns on phosphor plate to create structured white illumination and tunable road projection. The proposed headlight prototype system enables reconfigurable light distribution by leveraging laser beam scanning with fewer back‐end lens and simple thermal design requirements. Built with thin‐film lead zirconate titanate oxide (PbZrTiO3) actuators, the MEMS mirror achieved high‐frequency biaxial resonance of 17.328 kHz, 4.81 kHz, and optical scan angle of 12.9°. The large mirror design of 2.0 mm facilitates more refined resolvable projection pixels, delivers more optical power, and provides moderate optical aperture to possibly serve as the common spatial light modulator of headlight and the light detection and ranging (LiDAR) towards all‐in‐one integration. The carefully designed biaxial resonant frequency improves the device’s robustness by offsetting the lowest eigenmode away from the vehicle vibration. By establishing the laser headlight prototype systems of both 1D and 2D scanning modes, a mathematical model of laser modulation and MEMS electrical control principles of Lissajous scanning are proposed to tune the projection pattern density and shapes. It laid the foundation for developing a laser scanning control system with more complex project functions and prompting the application of MEMS for compact headlight system that addresses night driving visibility, eliminates glare effect, and renders interactive projection capabilities. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a automotive 
650 0 4 |a Automotives 
650 0 4 |a Laser applications 
650 0 4 |a Laser beams 
650 0 4 |a laser headlight 
650 0 4 |a Laser headlight 
650 0 4 |a Laser mirrors 
650 0 4 |a laser scanning 
650 0 4 |a Laser scanning 
650 0 4 |a Light distribution 
650 0 4 |a Light modulators 
650 0 4 |a Lissajous 
650 0 4 |a MEMS 
650 0 4 |a MEMS mirror 
650 0 4 |a Microelec-tromechanical system mirror 
650 0 4 |a Natural frequencies 
650 0 4 |a Optical radar 
650 0 4 |a piezoelectric 
650 0 4 |a Piezoelectric 
650 0 4 |a Piezoelectricity 
650 0 4 |a Reconfigurable 
650 0 4 |a Roads and streets 
650 0 4 |a Scanning 
650 0 4 |a Spatial light modulators 
650 0 4 |a Thermal designs 
650 0 4 |a Titanium compounds 
650 0 4 |a Vehicles 
650 0 4 |a Vibrations (mechanical) 
700 1 |a Ji, Y.  |e author 
700 1 |a Li, J.  |e author 
700 1 |a Liu, K.  |e author 
700 1 |a Xu, B.  |e author 
773 |t Micromachines