Numerical Study of Heat Transfer Enhancement within Confined Shell and Tube Latent Heat Thermal Storage Microsystem Using Hexagonal PCMs

Thermophoresis represents one of the most common methods of directing micromachines. Enhancement of heat transfer rates are of economic interest for micromachine operation. This study aims to examine the heat transfer enhancement within the shell and tube latent heat thermal storage system (LHTSS) u...

Full description

Bibliographic Details
Main Authors: Abderrahmane, A. (Author), Ahmed, S.E (Author), Alhazmi, M. (Author), Guedri, K. (Author), Maneengam, A. (Author), Saeed, A.M (Author), Weera, W. (Author), Younis, O. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
FEM
PCM
Online Access:View Fulltext in Publisher
LEADER 02556nam a2200493Ia 4500
001 10.3390-mi13071062
008 220718s2022 CNT 000 0 und d
020 |a 2072666X (ISSN) 
245 1 0 |a Numerical Study of Heat Transfer Enhancement within Confined Shell and Tube Latent Heat Thermal Storage Microsystem Using Hexagonal PCMs 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/mi13071062 
520 3 |a Thermophoresis represents one of the most common methods of directing micromachines. Enhancement of heat transfer rates are of economic interest for micromachine operation. This study aims to examine the heat transfer enhancement within the shell and tube latent heat thermal storage system (LHTSS) using PCMs (Phase Change Materials). The enthalpy–porosity approach is applied to formulate the melting situation and various shapes of inner heated fins are considered. The solution methodology is based on the Galerkin finite element analyses and wide ranges of the nanoparticle volume fraction are assumed, i.e., (0% ≤ φ ≤ 6%). The system entropy and the optimization of irreversibility are analyzed using the second law of the thermodynamics. The key outcomes revealed that the flow features, hexagonal entropy, and melting rate might be adjusted by varying the number of heated fins. Additionally, in case 4 where eight heated fins are considered, the highest results for the average liquid percentage are obtained. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Economic interests 
650 0 4 |a Enhancement of heat transfer 
650 0 4 |a Enthalpy-porosity 
650 0 4 |a Entropy 
650 0 4 |a FEM 
650 0 4 |a Finite element method 
650 0 4 |a Fins (heat exchange) 
650 0 4 |a Heat storage 
650 0 4 |a Heat transfer coefficients 
650 0 4 |a Heat Transfer enhancement 
650 0 4 |a Heat transfer rate 
650 0 4 |a Hexagonal phasis 
650 0 4 |a latent heat 
650 0 4 |a Latent heat 
650 0 4 |a Latent heat thermal storage 
650 0 4 |a Melting 
650 0 4 |a PCM 
650 0 4 |a Phase change materials 
650 0 4 |a Shell-and-tube 
650 0 4 |a Thermal storage system 
650 0 4 |a Tube 
650 0 4 |a tubes 
650 0 4 |a wings 
700 1 |a Abderrahmane, A.  |e author 
700 1 |a Ahmed, S.E.  |e author 
700 1 |a Alhazmi, M.  |e author 
700 1 |a Guedri, K.  |e author 
700 1 |a Maneengam, A.  |e author 
700 1 |a Saeed, A.M.  |e author 
700 1 |a Weera, W.  |e author 
700 1 |a Younis, O.  |e author 
773 |t Micromachines