Effect of Contact Area and Shape of Anode Current Collectors on Bacterial Community Structure in Microbial Fuel Cells

Low electrical conductivity of carbon materials is a source of potential loss for large carbonaceous electrode surfaces of MFCs due to the long distance traveled by electrons to the collector. In this paper, different configurations of titanium current collectors were used to connect large surfaces...

Full description

Bibliographic Details
Main Authors: Gondran, C. (Author), Haddour, N. (Author), Paitier, A. (Author), Vogel, T.M (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02812nam a2200469Ia 4500
001 10.3390-molecules27072245
008 220425s2022 CNT 000 0 und d
020 |a 14203049 (ISSN) 
245 1 0 |a Effect of Contact Area and Shape of Anode Current Collectors on Bacterial Community Structure in Microbial Fuel Cells 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/molecules27072245 
520 3 |a Low electrical conductivity of carbon materials is a source of potential loss for large carbonaceous electrode surfaces of MFCs due to the long distance traveled by electrons to the collector. In this paper, different configurations of titanium current collectors were used to connect large surfaces of carbon cloth anodes. The current collectors had different distances and contact areas to the anode. For the same anode surface (490 cm2 ), increasing the contact area from 28 cm2 to 70 cm2 enhanced power output from 58 mW·m−2 to 107 mW·m−2 . For the same contact area (28 cm2), decreasing the maximal distance of current collectors to anodes from 16.5 cm to 7.75 cm slightly increased power output from 50 mW·m−2 to 58 mW·m−2 . Molecular biology characterization (qPCR and 16S rRNA gene sequencing) of anodic bacterial communities indicated that the Geobacter number was not correlated with power. Moreover, Geobacter and Desulfuromonas abundance increased with the drop in potential on the anode and with the presence of fermentative microorganisms. Electrochemical impedance spectroscopy (EIS) showed that biofilm resistance decreased with the abundance of electroactive bacteria. All these results showed that the electrical gradient arising from collectors shapes microbial communities. Consequently, current collectors influence the performance of carbon-based anodes for full-scale MFC applications. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a anodic biofilm 
650 0 4 |a Bacteria 
650 0 4 |a bacterium 
650 0 4 |a Bioelectric Energy Sources 
650 0 4 |a bioenergy 
650 0 4 |a biofilm 
650 0 4 |a Biofilms 
650 0 4 |a carbon 
650 0 4 |a Carbon 
650 0 4 |a carbon-based electrodes 
650 0 4 |a chemistry 
650 0 4 |a current collector 
650 0 4 |a electroactive bacteria 
650 0 4 |a electrochemical impedance spectroscopy 
650 0 4 |a electrode 
650 0 4 |a Electrodes 
650 0 4 |a genetics 
650 0 4 |a Geobacter 
650 0 4 |a Geobacter 
650 0 4 |a microbial fuel cell 
650 0 4 |a microbiology 
650 0 4 |a power density 
650 0 4 |a RNA 16S 
650 0 4 |a RNA, Ribosomal, 16S 
650 0 4 |a titanium 
700 1 |a Gondran, C.  |e author 
700 1 |a Haddour, N.  |e author 
700 1 |a Paitier, A.  |e author 
700 1 |a Vogel, T.M.  |e author 
773 |t Molecules