Deep Reinforcement Learning-Based Resource Allocation for Satellite Internet of Things with Diverse QoS Guarantee

Large-scale terminals’ various QoS requirements are key challenges confronting the resource allocation of Satellite Internet of Things (S-IoT). This paper presents a deep reinforcement learning-based online channel allocation and power control algorithm in an S-IoT uplink scenario. The intelligent a...

Full description

Bibliographic Details
Main Authors: Hu, G. (Author), Li, Y. (Author), Pan, Z. (Author), Tang, S. (Author), Wu, Y. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02718nam a2200469Ia 4500
001 10.3390-s22082979
008 220425s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Deep Reinforcement Learning-Based Resource Allocation for Satellite Internet of Things with Diverse QoS Guarantee 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22082979 
520 3 |a Large-scale terminals’ various QoS requirements are key challenges confronting the resource allocation of Satellite Internet of Things (S-IoT). This paper presents a deep reinforcement learning-based online channel allocation and power control algorithm in an S-IoT uplink scenario. The intelligent agent determines the transmission channel and power simultaneously based on contextual information. Furthermore, the weighted normalized reward concerning success rate, power efficiency, and QoS requirement is adopted to balance the performance between increasing resource efficiency and meeting QoS requirements. Finally, a practical deployment mechanism based on transfer learning is proposed to promote onboard training efficiency and to reduce computation consumption of the training process. The simulation demonstrates that the proposed method can balance the success rate and power efficiency with QoS requirement guaranteed. For S-IoT’s normal operation condition, the proposed method can improve the power efficiency by 60.91% and 144.44% compared with GA and DRL_RA, while its power efficiency is only 4.55% lower than that of DRL-EERA. In addition, this method can be transferred and deployed to a space environment by merely 100 onboard training steps. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a channel allocation 
650 0 4 |a Channel allocation 
650 0 4 |a Deep learning 
650 0 4 |a deep reinforcement learning 
650 0 4 |a Efficiency 
650 0 4 |a Internet of things 
650 0 4 |a Onboard training 
650 0 4 |a power control 
650 0 4 |a Power control 
650 0 4 |a Power-control 
650 0 4 |a Power-efficiency 
650 0 4 |a QoS requirements 
650 0 4 |a Quality of service 
650 0 4 |a Reinforcement learning 
650 0 4 |a Resource allocation 
650 0 4 |a Resources allocation 
650 0 4 |a Satellite internet 
650 0 4 |a Satellite internet of thing 
650 0 4 |a Satellite Internet of Things 
650 0 4 |a Satellites 
650 0 4 |a transfer learning 
650 0 4 |a Transfer learning 
650 0 4 |a various QoS 
650 0 4 |a Various QoS 
700 1 |a Hu, G.  |e author 
700 1 |a Li, Y.  |e author 
700 1 |a Pan, Z.  |e author 
700 1 |a Tang, S.  |e author 
700 1 |a Wu, Y.  |e author 
773 |t Sensors