Machine Learning for Touch Localization on an Ultrasonic Lamb Wave Touchscreen

Classification and regression employing a simple Deep Neural Network (DNN) are investigated to perform touch localization on a tactile surface using ultrasonic guided waves. A robotic finger first simulates the touch action and captures the data to train a model. The model is then validated with dat...

Full description

Bibliographic Details
Main Authors: Bahrami, S. (Author), Grondin, F. (Author), Masson, P. (Author), Moriot, J. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02340nam a2200433Ia 4500
001 10.3390-s22093183
008 220510s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Machine Learning for Touch Localization on an Ultrasonic Lamb Wave Touchscreen 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22093183 
520 3 |a Classification and regression employing a simple Deep Neural Network (DNN) are investigated to perform touch localization on a tactile surface using ultrasonic guided waves. A robotic finger first simulates the touch action and captures the data to train a model. The model is then validated with data from experiments conducted with human fingers. The localization root mean square errors (RMSE) in time and frequency domains are presented. The proposed method provides satisfactory localization results for most human–machine interactions, with a mean error of 0.47 cm and standard deviation of 0.18 cm and a computing time of 0.44 ms. The classification approach is also adapted to identify touches on an access control keypad layout, which leads to an accuracy of 97% with a computing time of 0.28 ms. These results demonstrate that DNN-based methods are a viable alternative to signal processing-based approaches for accurate and robust touch localization using ultrasonic guided waves. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Access control 
650 0 4 |a Computing time 
650 0 4 |a Deep neural networks 
650 0 4 |a Guided electromagnetic wave propagation 
650 0 4 |a Human Machine Interface 
650 0 4 |a human–machine interface 
650 0 4 |a Localisation 
650 0 4 |a machine earning 
650 0 4 |a Machine earning 
650 0 4 |a Machine-learning 
650 0 4 |a Mean square error 
650 0 4 |a signal processing 
650 0 4 |a Signal processing 
650 0 4 |a Signal-processing 
650 0 4 |a Simple++ 
650 0 4 |a Surface waves 
650 0 4 |a Touch technologies 
650 0 4 |a touch technology 
650 0 4 |a Ultrasonic guided wave 
650 0 4 |a Ultrasonic lamb waves 
650 0 4 |a ultrasonic wave 
650 0 4 |a Ultrasonic waves 
700 1 |a Bahrami, S.  |e author 
700 1 |a Grondin, F.  |e author 
700 1 |a Masson, P.  |e author 
700 1 |a Moriot, J.  |e author 
773 |t Sensors