Applying Hybrid Lstm-Gru Model Based on Heterogeneous Data Sources for Traffic Speed Prediction in Urban Areas

With the advent of the Internet of Things (IoT), it has become possible to have a variety of data sets generated through numerous types of sensors deployed across large urban areas, thus empowering the notion of smart cities. In smart cities, various types of sensors may fall into different administ...

Full description

Bibliographic Details
Main Authors: Chughtai, J.-U.-R (Author), Haq, I.U (Author), Shafiq, O. (Author), Zafar, N. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
CNN
GRU
IoT
ITS
Online Access:View Fulltext in Publisher
LEADER 02771nam a2200481Ia 4500
001 10.3390-s22093348
008 220510s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Applying Hybrid Lstm-Gru Model Based on Heterogeneous Data Sources for Traffic Speed Prediction in Urban Areas 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22093348 
520 3 |a With the advent of the Internet of Things (IoT), it has become possible to have a variety of data sets generated through numerous types of sensors deployed across large urban areas, thus empowering the notion of smart cities. In smart cities, various types of sensors may fall into different administrative domains and may be accessible through exposed Application Program Interfaces (APIs). In such setups, for traffic prediction in Intelligent Transport Systems (ITS), one of the major prerequisites is the integration of heterogeneous data sources within a preprocessing data pipeline resulting into hybrid feature space. In this paper, we first present a comprehensive algorithm to integrate heterogeneous data obtained from sensors, services, and exogenous data sources into a hybrid spatial–temporal feature space. Following a rigorous exploratory data analysis, we apply a variety of deep learning algorithms specialized for time series geospatial data and perform a comparative analysis of Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), and their hybrid combinations. The hybrid LSTM–GRU model outperforms the rest with Root Mean Squared Error (RMSE) of 4.5 and Mean Absolute Percentage Error (MAPE) of 6.67%. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Application program interfaces 
650 0 4 |a Application programming interfaces (API) 
650 0 4 |a Application programs 
650 0 4 |a CNN 
650 0 4 |a Convolutional neural network 
650 0 4 |a Convolutional neural networks 
650 0 4 |a Data set 
650 0 4 |a Feature space 
650 0 4 |a Gated recurrent unit 
650 0 4 |a GRU 
650 0 4 |a Heterogeneous data sources 
650 0 4 |a Intelligent systems 
650 0 4 |a Intelligent vehicle highway systems 
650 0 4 |a Internet of things 
650 0 4 |a IoT 
650 0 4 |a ITS 
650 0 4 |a Long short-term memory 
650 0 4 |a LSTM 
650 0 4 |a Mean square error 
650 0 4 |a Model-based OPC 
650 0 4 |a Smart city 
650 0 4 |a Speed prediction 
650 0 4 |a Time series analysis 
650 0 4 |a Traffic control 
650 0 4 |a Traffic speed 
650 0 4 |a Urban areas 
700 1 |a Chughtai, J.-U.-R.  |e author 
700 1 |a Haq, I.U.  |e author 
700 1 |a Shafiq, O.  |e author 
700 1 |a Zafar, N.  |e author 
773 |t Sensors