Simulations and Experimental Analysis of a High Viscosity Inkjet Printing Device Based on Fabry–Pérot Resonator

The study investigates the effect of changing various input parameters on the pressure responses at acoustic cavities of a droplet-based acoustic printing device consisting of a Fabry–Pérot (FP) resonator and a standing wave-source chamber. The standing wave of the acoustic radiation pressure at th...

Full description

Bibliographic Details
Main Authors: Hur, S. (Author), Kim, Y. (Author), Lee, D.-G (Author), Shah, M.A (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02663nam a2200457Ia 4500
001 10.3390-s22093363
008 220510s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Simulations and Experimental Analysis of a High Viscosity Inkjet Printing Device Based on Fabry–Pérot Resonator 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22093363 
520 3 |a The study investigates the effect of changing various input parameters on the pressure responses at acoustic cavities of a droplet-based acoustic printing device consisting of a Fabry–Pérot (FP) resonator and a standing wave-source chamber. The standing wave of the acoustic radiation pressure at the FP resonator is analyzed. The behavior of the standing wave and acoustic radiation force at the FP resonator is presented and compared with the measured results by varying the posi-tion of the standing wave-generating plate. The pressure changes inside the standing wave-source chamber are investigated and discussed to determine the reason for the sudden high-pressure drop at the FP resonator. Furthermore, the effects of inserting the nozzle and droplet inside the FP resonator on the standing wave and acoustic radiation force are analyzed. Experimental analysis is performed by collecting acoustic pressure data at the outlet of the FP resonator. The simulated and measured pressure drop behaviors are compared. The presented numerical approach can be used to set optimal design guidelines for obtaining a higher acoustic pressure inside the acoustic cavities of droplet-based acoustic jetting and other acoustofluidic devices. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Acoustic cavities 
650 0 4 |a Acoustic emissions 
650 0 4 |a Acoustic fields 
650 0 4 |a acoustic pressure 
650 0 4 |a Acoustic pressures 
650 0 4 |a Acoustic radiation force 
650 0 4 |a Acoustic radiators 
650 0 4 |a Acoustic wave propagation 
650 0 4 |a Acoustic wave transmission 
650 0 4 |a Drops 
650 0 4 |a Experimental analysis 
650 0 4 |a Fabry–Pérot resonator 
650 0 4 |a Fabry-Perot resonators 
650 0 4 |a High viscosities 
650 0 4 |a high viscosity 
650 0 4 |a Pressure drop 
650 0 4 |a Printing devices 
650 0 4 |a Radiation effects 
650 0 4 |a Resonators 
650 0 4 |a Simulation analysis 
650 0 4 |a Standing wave 
650 0 4 |a standing waves 
650 0 4 |a Viscosity 
650 0 4 |a Wave radiation 
700 1 |a Hur, S.  |e author 
700 1 |a Kim, Y.  |e author 
700 1 |a Lee, D.-G.  |e author 
700 1 |a Shah, M.A.  |e author 
773 |t Sensors