Strain-Dependent Photoacoustic Characteristics of Free-Standing Carbon-Nanocomposite Transmitters

In this paper we demonstrate strain-dependent photoacoustic (PA) characteristics of free-standing nanocomposite transmitters that are made of carbon nanotubes (CNT) and candle soot nanoparticles (CSNP) with an elastomeric polymer matrix. We analyzed and compared PA output performances of these trans...

Full description

Bibliographic Details
Main Authors: Abbasi, M.A (Author), Baac, H.W (Author), Faraz, M. (Author), Lee, K.-T (Author), Shin, C. (Author), Son, D. (Author), Won, S.M (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02632nam a2200445Ia 4500
001 10.3390-s22093432
008 220706s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Strain-Dependent Photoacoustic Characteristics of Free-Standing Carbon-Nanocomposite Transmitters 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22093432 
520 3 |a In this paper we demonstrate strain-dependent photoacoustic (PA) characteristics of free-standing nanocomposite transmitters that are made of carbon nanotubes (CNT) and candle soot nanoparticles (CSNP) with an elastomeric polymer matrix. We analyzed and compared PA output performances of these transmitters which are prepared first on glass substrates and then in a delaminated free-standing form for strain-dependent characterization. This confirms that the nanocomposite transmitters with lower concentration of nanoparticles exhibit more flexible and stretchable property in terms of Young’s modulus in a range of 4.08–10.57 kPa. Then, a dynamic endurance test was performed revealing that both types of transmitters are reliable with pressure amplitude variation as low as 8–15% over 100–800 stretching cycles for a strain level of 5–28% with dynamic endurance in range of 0.28–2.8%. Then, after 2000 cycles, the transmitters showed pressure amplitude variation of 6–29% (dynamic endurance range of 0.21–1.03%) at a fixed strain level of 28%. This suggests that the free-standing nanocomposite transmitters can be used as a strain sensor under a variety of environments providing robustness under repeated stretching cycles. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Amplitude variations 
650 0 4 |a Carbon nanocomposite 
650 0 4 |a Carbon nanotubes 
650 0 4 |a Free standings 
650 0 4 |a Free-standing nanocomposites 
650 0 4 |a nanocomposites 
650 0 4 |a Nanocomposites 
650 0 4 |a Nanoparticles 
650 0 4 |a photoacoustic transmitter 
650 0 4 |a Photoacoustic transmitter 
650 0 4 |a Polymer matrix composites 
650 0 4 |a Pressure amplitudes 
650 0 4 |a Strain levels 
650 0 4 |a strain sensor 
650 0 4 |a Strain sensors 
650 0 4 |a Strain-dependent 
650 0 4 |a stretchable device 
650 0 4 |a Stretchable device 
650 0 4 |a Substrates 
650 0 4 |a Transmitters 
700 1 0 |a Abbasi, M.A.  |e author 
700 1 0 |a Baac, H.W.  |e author 
700 1 0 |a Faraz, M.  |e author 
700 1 0 |a Lee, K.-T.  |e author 
700 1 0 |a Shin, C.  |e author 
700 1 0 |a Son, D.  |e author 
700 1 0 |a Won, S.M.  |e author 
773 |t Sensors