Optimizing Calibration for a Capacitance-Based Void Fraction Sensor with Asymmetric Electrodes under Horizontal Flow in a Smoothed Circular Macro-Tube

In this study, a technique that uses a capacitance sensor with an asymmetric electrode to measure the void fraction of a refrigerant was developed. It is known that the void fraction and flow pattern affect the measured capacitance. Therefore, the relationship between the void fraction and capacitan...

Full description

Bibliographic Details
Main Authors: Jeong, J. (Author), Kim, M. (Author), Komeda, K. (Author), Oinuma, M. (Author), Saito, K. (Author), Sato, T. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02771nam a2200469Ia 4500
001 10.3390-s22093511
008 220706s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Optimizing Calibration for a Capacitance-Based Void Fraction Sensor with Asymmetric Electrodes under Horizontal Flow in a Smoothed Circular Macro-Tube 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22093511 
520 3 |a In this study, a technique that uses a capacitance sensor with an asymmetric electrode to measure the void fraction of a refrigerant was developed. It is known that the void fraction and flow pattern affect the measured capacitance. Therefore, the relationship between the void fraction and capacitance is not linear; hence, a calibration method for obtaining accurate measurements is necessary. A calibration method was designed in this study based on repeated capacitance measurements and the bimodal temporal distribution to calibrate the atypical and repetitive flow patterns of slug flow and its transition to the intermittent flow regime. The calibration method also considers the weighted-average relation for the gradual transition of the intermittent to annular flow pattern according to the change from low to high quality. The proposed method was experimentally analyzed under the conditions of R32 refrigerant, a tube inner diameter of 7.1 mm, saturation temperature of 25◦C, mass flux of 100–400 kg m−2 s−1, and vapor quality of 0.025–0.900, and it was validated using a quick-closing valve (QCV) system under identical conditions. A relative error of 2.99% was obtained for the entire system, indicating good agreement between the proposed and QCV-based methods. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Accurate measurement 
650 0 4 |a Asymmetric electrodes 
650 0 4 |a Calibration 
650 0 4 |a calibration method 
650 0 4 |a Calibration method 
650 0 4 |a Capacitance 
650 0 4 |a Capacitance measurement 
650 0 4 |a capacitance sensor 
650 0 4 |a Capacitance sensors 
650 0 4 |a Electrodes 
650 0 4 |a Flow patterns 
650 0 4 |a Horizontal flows 
650 0 4 |a Macro-tubes 
650 0 4 |a quick-closing valve 
650 0 4 |a Quick-closing valve 
650 0 4 |a R32 refrigerant 
650 0 4 |a R32 refrigerant 
650 0 4 |a Real time measurements 
650 0 4 |a real-time measurement 
650 0 4 |a Refrigerants 
650 0 4 |a void fraction 
650 0 4 |a Void fraction 
650 0 4 |a Void fraction sensor 
700 1 0 |a Jeong, J.  |e author 
700 1 0 |a Kim, M.  |e author 
700 1 0 |a Komeda, K.  |e author 
700 1 0 |a Oinuma, M.  |e author 
700 1 0 |a Saito, K.  |e author 
700 1 0 |a Sato, T.  |e author 
773 |t Sensors