Ultrasensitive Electrochemical Detection and Plasmon-Enhanced Photocatalytic Degradation of Rhodamine B Based on Dual-Functional, 3D, Hierarchical Ag/ZnO Nanoflowers

The sensitive detection and degradation of synthetic dyes are pivotal to maintain safety owing to the adverse side effects they impart on living beings. In this work, we developed a sensitive electrochemical sensor for the nanomolar-level detection of rhodamine B (RhB) using a dual-functional, silve...

Full description

Bibliographic Details
Main Authors: Balram, D. (Author), Sebastian, N. (Author), Yu, W.-C (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03287nam a2200541Ia 4500
001 10.3390-s22135049
008 220718s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a Ultrasensitive Electrochemical Detection and Plasmon-Enhanced Photocatalytic Degradation of Rhodamine B Based on Dual-Functional, 3D, Hierarchical Ag/ZnO Nanoflowers 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22135049 
520 3 |a The sensitive detection and degradation of synthetic dyes are pivotal to maintain safety owing to the adverse side effects they impart on living beings. In this work, we developed a sensitive electrochemical sensor for the nanomolar-level detection of rhodamine B (RhB) using a dual-functional, silver-decorated zinc oxide (Ag/ZnO) composite-modified, screen-printed carbon electrode. The plasmon-enhanced photocatalytic degradation of organic pollutant RhB was also performed using this nanocomposite prepared by embedding different weight percentages (1, 3, and 5 wt%) of Ag nanoparticles on the surface of a three-dimensional (3D), hierarchical ZnO nanostructure based on the photoreduction approach. The structure and morphology of an Ag/ZnO nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental mapping, ultraviolet-visible (UV-vis) spectroscopy, and X-ray diffraction (XRD). The electrochemical sensor exhibited a very high sensitivity of 151.44 µAµM−1 cm−2 and low detection limit of 0.8 nM towards RhB detection. The selectivity, stability, repeatability, reproducibility, and practical feasibility were also analyzed to prove their reliability. Furthermore, the photocatalysis results revealed that 3 wt% of the Ag/ZnO hybrid nanostructure acquired immense photostability, reusability, and 90.5% degradation efficiency under visible light. Additionally, the pseudo-first-order rate constant of Ag-3/ZnO is 2.186 min−1 suggested promising activity in visible light photocatalysis. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Adverse side effects 
650 0 4 |a Chemical detection 
650 0 4 |a ELectrochemical detection 
650 0 4 |a electrochemical sensor 
650 0 4 |a Electrodes 
650 0 4 |a High resolution transmission electron microscopy 
650 0 4 |a II-VI semiconductors 
650 0 4 |a Level detections 
650 0 4 |a Light 
650 0 4 |a Morphology 
650 0 4 |a Nanocomposites 
650 0 4 |a Nanomolar levels 
650 0 4 |a Nanorods 
650 0 4 |a Organic pollutants 
650 0 4 |a photocatalysis 
650 0 4 |a Photocatalysis 
650 0 4 |a Photocatalytic degradation 
650 0 4 |a Photodegradation 
650 0 4 |a Rate constants 
650 0 4 |a Reusability 
650 0 4 |a Rhodamine-B 
650 0 4 |a Rhodium compounds 
650 0 4 |a Scanning electron microscopy 
650 0 4 |a Screen-printed carbon electrodes 
650 0 4 |a Sensitive detection 
650 0 4 |a Silver nanoparticles 
650 0 4 |a synthetic dye 
650 0 4 |a Synthetic dyes 
650 0 4 |a Ultrasensitive 
650 0 4 |a voltammetry 
650 0 4 |a zinc oxide 
650 0 4 |a Zinc oxide 
700 1 |a Balram, D.  |e author 
700 1 |a Sebastian, N.  |e author 
700 1 |a Yu, W.-C.  |e author 
773 |t Sensors