520 |
3 |
|
|a Recently, the rapid development of convolutional neural networks (CNN) has consistently improved object detection performance using CNN and has naturally been implemented in autonomous driving due to its operational potential in real-time. Detecting moving targets to realize autonomous driving is an essential task for the safety of drivers and pedestrians, and CNN-based moving target detectors have shown stable performance in fair weather. However, there is a consider-able drop in detection performance during poor weather conditions like hazy or foggy situations due to particles in the atmosphere. To ensure stable moving object detection, an image restoration process with haze removal must be accompanied. Therefore, this paper proposes an image dehazing network that estimates the current weather conditions and removes haze using the haze level to improve the detection performance under poor weather conditions due to haze and low visibility. Combined with the thermal image, the restored image is assigned to the two You Only Look Once (YOLO) object detectors, respectively, which detect moving targets independently and improve object detection performance using late fusion. The proposed model showed improved dehazing performance compared with the existing image dehazing models and has proved that images taken under foggy conditions, the poorest weather for autonomous driving, can be restored to normal images. Through the fusion of the RGB image restored by the proposed image dehazing network with thermal images, the proposed model improved the detection accuracy by up to 22% or above in a dense haze environment like fog compared with models using existing image dehazing techniques. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
|