A Quasi-Single-Phase Model for Debris Flows Incorporating Non-Newtonian Fluid Behavior

Debris-flow modeling is a great challenge due to its complex physical mechanism that remains poorly understood. The present research incorporates the effect of rheological features of the non-Newtonian fluid into the complete quasi-single-phase mixture model, which explicitly accommodates the intera...

Full description

Bibliographic Details
Main Authors: Tian, H. (Author), Xia, C. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02718nam a2200493Ia 4500
001 10.3390-w14091369
008 220706s2022 CNT 000 0 und d
020 |a 20734441 (ISSN) 
245 1 0 |a A Quasi-Single-Phase Model for Debris Flows Incorporating Non-Newtonian Fluid Behavior 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/w14091369 
520 3 |a Debris-flow modeling is a great challenge due to its complex physical mechanism that remains poorly understood. The present research incorporates the effect of rheological features of the non-Newtonian fluid into the complete quasi-single-phase mixture model, which explicitly accommodates the interactions between flow, non-uniform sediment transport, and bed evolution. The effect of rheological features is estimated by Hersch–Bulkley–Papanastasiou model that can be simplified to Bingham or Newtonian models with specific coefficients. The governing equations are solved by a fully conservative numerical algorithm, using an explicit finite volume discretization with well-balanced slope-limited centered scheme combined with an implicit discretization method. One set of large-scaled U.S. Geological Survey debris-flow experiments is applied to investigate the influence of the non-Newtonian fluid on debris-flow modeling. It is found that the present model closed by Hersch–Bulkley–Papanastasiou model performs better than the models without considering effect of rheological features, which may facilitate the development of quasi-single-phase mixture modeling for debris flows. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Debris 
650 0 4 |a Debris flow modelling 
650 0 4 |a debris flows 
650 0 4 |a Debris flows 
650 0 4 |a Discrete event simulation 
650 0 4 |a effective viscosity 
650 0 4 |a Effective viscosity 
650 0 4 |a Finite volume method 
650 0 4 |a Flow control 
650 0 4 |a Flow measurement 
650 0 4 |a Flow simulation 
650 0 4 |a Mixture modeling 
650 0 4 |a Mixtures 
650 0 4 |a Non Newtonian flow 
650 0 4 |a Non Newtonian liquids 
650 0 4 |a non-Newtonian fluid 
650 0 4 |a Numerical methods 
650 0 4 |a numerical modeling 
650 0 4 |a Papanastasiou model 
650 0 4 |a Phase mixture 
650 0 4 |a Physical mechanism 
650 0 4 |a Quasi single phase modeling 
650 0 4 |a quasi-single-phase mixture model 
650 0 4 |a Quasi-single-phase mixture model 
650 0 4 |a Rheology 
650 0 4 |a Sediment transport 
650 0 4 |a Single phasis 
650 0 4 |a Transport properties 
650 0 4 |a Viscous flow 
700 1 0 |a Tian, H.  |e author 
700 1 0 |a Xia, C.  |e author 
773 |t Water (Switzerland)