Firm Characteristics and Chinese Stocks

This paper presents a comprehensive study on predicting the cross section of Chinese stock market returns with a large panel of 75 individual firm characteristics. We use not only the traditional Fama-MacBeth regression, but also the “big-data” econometric methods: principal component analysis (PCA)...

Full description

Bibliographic Details
Main Authors: Jiang, F. (Author), Tang, G. (Author), Zhou, G. (Author)
Format: Article
Language:English
Published: KeAi Communications Co. 2018
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01426nam a2200217Ia 4500
001 10.3724-SP.J.1383.304014
008 220706s2018 CNT 000 0 und d
020 |a 20962320 (ISSN) 
245 1 0 |a Firm Characteristics and Chinese Stocks 
260 0 |b KeAi Communications Co.  |c 2018 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3724/SP.J.1383.304014 
520 3 |a This paper presents a comprehensive study on predicting the cross section of Chinese stock market returns with a large panel of 75 individual firm characteristics. We use not only the traditional Fama-MacBeth regression, but also the “big-data” econometric methods: principal component analysis (PCA), partial least squares (PLS), and forecast combination to extract information from all the 75 firm characteristics. These characteristics are important return predictors, with statistical and economic significance. Furthermore, firm characteristics that are related to trading frictions, momentum, and profitability are the most effective predictors of future stock returns in the Chinese stock market. © 2019 Elsevier B.V. 
650 0 4 |a Chinese stock market 
650 0 4 |a Firm characteristics 
650 0 4 |a Machine learning 
650 0 4 |a Partial least squares 
650 0 4 |a Return predictability 
700 1 |a Jiang, F.  |e author 
700 1 |a Tang, G.  |e author 
700 1 |a Zhou, G.  |e author 
773 |t Journal of Management Science and Engineering