Predicting group-level outcome variables: An empirical comparison of analysis strategies

This study provides a review of two methods for analyzing multilevel data with group-level outcome variables and compares them in a simulation study. The analytical methods included an unadjusted ordinary least squares (OLS) analysis of group means and a two-step adjustment of the group means sugges...

Full description

Bibliographic Details
Main Authors: Foster-Johnson, L. (Author), Kromrey, J.D (Author)
Format: Article
Language:English
Published: Springer New York LLC 2018
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02609nam a2200493Ia 4500
001 10.3758-s13428-018-1025-8
008 220706s2018 CNT 000 0 und d
020 |a 1554351X (ISSN) 
245 1 0 |a Predicting group-level outcome variables: An empirical comparison of analysis strategies 
260 0 |b Springer New York LLC  |c 2018 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3758/s13428-018-1025-8 
520 3 |a This study provides a review of two methods for analyzing multilevel data with group-level outcome variables and compares them in a simulation study. The analytical methods included an unadjusted ordinary least squares (OLS) analysis of group means and a two-step adjustment of the group means suggested by Croon and van Veldhoven (2007). The Type I error control, power, bias, standard errors, and RMSE in parameter estimates were compared across design conditions that included manipulations of number of predictor variables, level of correlation between predictors, level of intraclass correlation, predictor reliability, effect size, and sample size. The results suggested that an OLS analysis of the group means, with White’s heteroscedasticity adjustment, provided more power for tests of group-level predictors, but less power for tests of individual-level predictors. Furthermore, this simple analysis avoided the extreme bias in parameter estimates and inadmissible solutions that were encountered with other strategies. These results were interpreted in terms of recommended analytical methods for applied researchers. © 2018, Psychonomic Society, Inc. 
650 0 4 |a Analysis of group means 
650 0 4 |a analytic method 
650 0 4 |a article 
650 0 4 |a Bias 
650 0 4 |a controlled study 
650 0 4 |a Correlation of Data 
650 0 4 |a effect size 
650 0 4 |a error 
650 0 4 |a Group-level outcomes 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a least square analysis 
650 0 4 |a Least-Squares Analysis 
650 0 4 |a Micro–macro data 
650 0 4 |a multilevel analysis 
650 0 4 |a Multilevel Analysis 
650 0 4 |a observer variation 
650 0 4 |a Observer Variation 
650 0 4 |a outcome assessment 
650 0 4 |a outcome variable 
650 0 4 |a predictor variable 
650 0 4 |a reliability 
650 0 4 |a reproducibility 
650 0 4 |a Reproducibility of Results 
650 0 4 |a sample size 
650 0 4 |a Sample Size 
650 0 4 |a scientist 
650 0 4 |a simulation 
650 0 4 |a statistical bias 
700 1 |a Foster-Johnson, L.  |e author 
700 1 |a Kromrey, J.D.  |e author 
773 |t Behavior Research Methods