Acyclic edge coloring of planar graphs

An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index of G, denoted by χ′a(G), is the smallest integer k such that G is acyclically edge k-colorable. In this paper, we consider the planar graphs without 3-cycles and...

Full description

Bibliographic Details
Main Authors: Bu, Y. (Author), Jia, Q. (Author), Zhu, H. (Author), Zhu, J. (Author)
Format: Article
Language:English
Published: American Institute of Mathematical Sciences 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01091nam a2200229Ia 4500
001 10.3934-math.2022605
008 220425s2022 CNT 000 0 und d
020 |a 24736988 (ISSN) 
245 1 0 |a Acyclic edge coloring of planar graphs 
260 0 |b American Institute of Mathematical Sciences  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3934/math.2022605 
520 3 |a An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index of G, denoted by χ′a(G), is the smallest integer k such that G is acyclically edge k-colorable. In this paper, we consider the planar graphs without 3-cycles and intersecting 4-cycles, and prove that χ′a(G) ≤ ∆(G) + 1 if ∆(G) ≥ 8. © 2022 the Author(s), licensee AIMS Press. 
650 0 4 |a acyclic edge coloring 
650 0 4 |a cycle 
650 0 4 |a girth 
650 0 4 |a maximum degree 
650 0 4 |a planar graph 
700 1 |a Bu, Y.  |e author 
700 1 |a Jia, Q.  |e author 
700 1 |a Zhu, H.  |e author 
700 1 |a Zhu, J.  |e author 
773 |t AIMS Mathematics