Site specific SEM/FIB/TEM for analysis of lubricated sliding wear of aluminium alloy composites

Although extensive research has been undertaken into the dry sliding wear of aluminium alloys, only limited work has been reported on lubricated wear. In this paper, the lubricated sliding wear of some powder derived aluminium alloy composites is reported. Stereo pairs of the worn surface were obtai...

Full description

Bibliographic Details
Main Authors: Walker, J.C (Author), Jones, H. (Author), Rainforth, W.M (Author)
Format: Article
Language:English
Published: 2006.
Subjects:
Online Access:Get fulltext
Description
Summary:Although extensive research has been undertaken into the dry sliding wear of aluminium alloys, only limited work has been reported on lubricated wear. In this paper, the lubricated sliding wear of some powder derived aluminium alloy composites is reported. Stereo pairs of the worn surface were obtained in the SEM and digitally reconstructed to give an accurate projection of the surface topography. Analysis of the average surface roughness (Ra) along chosen sections provided quantitative information about the wear mechanism. Following this, dual beam focused ion beam (FIB) was undertaken to further explore the features revealed by the SEM surface reconstructions, with TEM sections removed from selected regions. Surface deformation was confined to a narrow layer, typically 1µm thick. Subgrain size within the subsurface layer was comparable to that found in dry sliding wear tests. Reinforcement fracture occurred in the surface particles only. The resultant fragments were often incorporated back into the surface following detachment, such that the total volume fraction reinforcement at the surface was greater than in the bulk. Thus, the dynamic surface topography was a result of three factors: surface deformation, local detachment of reinforcement and re-incorporation of the fragments back into the surface.