Nanoscale surface domain formation on the +z face of lithium niobate by pulsed UV laser illumination

Single-crystal congruent lithium niobate samples have been illuminated on the +z crystal face by pulsed ultraviolet laser wavelengths below (248 nm) and around (298-329 nm) the absorption edge. Following exposure, etching with hydrofluoric acid reveals highly regular precise domain-like features of...

Full description

Bibliographic Details
Main Authors: Valdivia, C.E (Author), Sones, C.L (Author), Scott, J.G (Author), Mailis, S. (Author), Eason, R.W (Author), Scrymgeour, D.A (Author), Gopalan, V. (Author), Jungk, T. (Author), Soergel, E. (Author), Clark, I. (Author)
Format: Article
Language:English
Published: 2005.
Subjects:
Online Access:Get fulltext
LEADER 01488 am a22002293u 4500
001 16073
042 |a dc 
100 1 0 |a Valdivia, C.E.  |e author 
700 1 0 |a Sones, C.L.  |e author 
700 1 0 |a Scott, J.G.  |e author 
700 1 0 |a Mailis, S.  |e author 
700 1 0 |a Eason, R.W.  |e author 
700 1 0 |a Scrymgeour, D.A.  |e author 
700 1 0 |a Gopalan, V.  |e author 
700 1 0 |a Jungk, T.  |e author 
700 1 0 |a Soergel, E.  |e author 
700 1 0 |a Clark, I.  |e author 
245 0 0 |a Nanoscale surface domain formation on the +z face of lithium niobate by pulsed UV laser illumination 
260 |c 2005. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/16073/1/16073.pdf 
520 |a Single-crystal congruent lithium niobate samples have been illuminated on the +z crystal face by pulsed ultraviolet laser wavelengths below (248 nm) and around (298-329 nm) the absorption edge. Following exposure, etching with hydrofluoric acid reveals highly regular precise domain-like features of widths ~150-300 nm, exhibiting distinct three-fold symmetry. Examination of illuminated unetched areas by scanning force microscopy shows a corresponding contrast in piezoelectric response. These observations indicate the formation of nanoscale ferroelectric surface domains, whose depth has been measured via focused ion beam milling to be ~2 micron. We envisage this direct optical poling technique as a viable route to precision domain-engineered structures for waveguide and other surface applications. 
655 7 |a Article