The transmission of vertical vibration through seats: influence of the characteristics of the human body

The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration)...

Full description

Bibliographic Details
Main Authors: Toward, Martin G.R (Author), Griffin, Michael J. (Author)
Format: Article
Language:English
Published: 2011-12-19.
Subjects:
Online Access:Get fulltext
LEADER 02521 am a22001453u 4500
001 201935
042 |a dc 
100 1 0 |a Toward, Martin G.R.  |e author 
700 1 0 |a Griffin, Michael J.  |e author 
245 0 0 |a The transmission of vertical vibration through seats: influence of the characteristics of the human body 
260 |c 2011-12-19. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/201935/1/14690_MGRT_MJG_2011_Seat_transmissibility_influence_of_body_characteristics.pdf 
520 |a The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18-65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s-2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat-person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting weight. 
540 |a cc_by_nc_nd_4 
655 7 |a Article