The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions

The long term stability of natural halloysite nanotubes was studied at room temperature (22 ± 2 ºC) in pure water, acidic and basic aqueous suspensions. The structural and morphological transformations of nanotubes were studied by TEM, SEM, nitrogen adsorption, XRD Raman and FTIR spectroscopy accomp...

Full description

Bibliographic Details
Main Authors: White, Rachel D. (Author), Bavykin, Dmitry V. (Author), Walsh, F.C (Author)
Format: Article
Language:English
Published: 2012-02-17.
Subjects:
Online Access:Get fulltext
Description
Summary:The long term stability of natural halloysite nanotubes was studied at room temperature (22 ± 2 ºC) in pure water, acidic and basic aqueous suspensions. The structural and morphological transformations of nanotubes were studied by TEM, SEM, nitrogen adsorption, XRD Raman and FTIR spectroscopy accompanied by monitoring the concentration of dissolved Si(IV) and Al(III) in solution. It has been revealed that, in 1 mol dm-3 H2SO4 solution, the dissolution of halloysite is initiated on the inner surface of nanotubes leading to formation of amorphous spheroidal nanoparticles of SiO2 whereas, in 1 mol dm-3 NaOH solution, dissolution of inner surface of nanotubes is accompanied by formation of Al(OH)3 nanosheets.