Analytical and numerical modeling methods for impedance analysis of single cells on-chip
Electrical impedance spectroscopy (EIS) is a noninvasive method for characterizing the dielectric properties of biological particles. The technique can differentiate between cell types and provide information on cell properties through measurement of the permittivity and conductivity of the cell mem...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2008-03-06.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | Electrical impedance spectroscopy (EIS) is a noninvasive method for characterizing the dielectric properties of biological particles. The technique can differentiate between cell types and provide information on cell properties through measurement of the permittivity and conductivity of the cell membrane and cytoplasm. In terms of lab-on-a-chip (LOC) technology, cells pass sequentially through the microfluidic channel at high speed and are analyzed individually, rather than as traditionally done on a mixture of particles in suspension. This paper describes the analytical and numerical modeling methods for EIS of single cell analysis in a microfluidic cytometer. The presented modeling methods include Maxwell's mixture theory, equivalent circuit model and finite element method. The difference and advantages of these methods have been discussed. The modeling work has covered the static case - an immobilized cell in suspension and the dynamic case - a moving cell in the channel. |
---|