Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1)

Biogeochemical ocean circulation models used to investigate the role of plankton ecosystems in global change rely on adjustable parameters to compensate for missing biological complexity. In principle, optimal parameter values can be estimated by fitting models to observational data, including satel...

Full description

Bibliographic Details
Main Authors: Hemmings, J.C.P (Author), Challenor, P.G (Author), Yool, A. (Author)
Format: Article
Language:English
Published: 2015-03-23.
Subjects:
Online Access:Get fulltext
LEADER 01379 am a22001573u 4500
001 369876
042 |a dc 
100 1 0 |a Hemmings, J.C.P.  |e author 
700 1 0 |a Challenor, P.G.  |e author 
700 1 0 |a Yool, A.  |e author 
245 0 0 |a Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1) 
260 |c 2015-03-23. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/369876/1/gmd-8-697-2015.pdf 
520 |a Biogeochemical ocean circulation models used to investigate the role of plankton ecosystems in global change rely on adjustable parameters to compensate for missing biological complexity. In principle, optimal parameter values can be estimated by fitting models to observational data, including satellite ocean colour products such as chlorophyll that achieve good spatial and temporal coverage of the surface ocean. However, comprehensive parametric analyses require large ensemble experiments that are computationally infeasible with global 3-D simulations. Site-based simulations provide an efficient alternative but can only be used to make reliable inferences about global model performance if robust quantitative descriptions of their relationships with the corresponding 3-D simulations can be established. 
540 |a other 
655 7 |a Article